|
|
Calculation of Elliptic Sphere Profile Error Using the Combination of the Differential Geometry Algorithm and the Particle Swarm Optimization Algorithm |
ZHANG Lei1,ZHANG Zuo-ying1,ZHANG Zhi-sheng2 |
1.Mechanical & Electrical Engineering School, Xuzhou Institute of Technology, Xuzhou, Jiangsu 221018, China;
2.Mechanical Engineering School, Southeast University, Nanjing, Jiangsu 210089, China |
|
|
Abstract To address the issue of profile error calculation for an elliptic sphere, a mathematical model that transfers the discussion from a minimal distance calculation to a sphere center coordinates searching of an ideal ellipsoid was proposed based on the differential geometry algorithm (DGA) and the minimum zone principle. The proposed model was answered by the particle swarm optimization (PSO) algorithm. A numerical example demonstrated the effectiveness of the proposed method without counting the instrument’s measurement error.
|
Received: 04 March 2015
Published: 20 October 2015
|
|
|
|
|
[1]王旭蕴,张玉坤.轮廓度误差的精密测量和评定[J].计量学报,1995,16(1):12-17.
[2]王伯平,曾建潮.一种自调整的空间面轮廓度误差的评定方法[J].计量学报,2002,23(2):106-108.
[3]王林艳,王建华.基于坐标法的复杂曲面轮廓度的误差评定[J].西安工业学院学报,2006,26(3):228-232.
[4]郭慧,林大钧.基于微粒群算法的复杂曲面轮廓度误差计算[J].东华大学学报(自然科学版),2008,34(3):274-277.
[5]廖平.基于粒子群算法和分割逼近法的复杂曲面轮廓度误差计算[J].中国机械工程,2010,21(2):201-205.
[6]廖平.基于遗传算法和分割逼近法精确计算复杂曲面轮廓度误差[J].机械工程学报,2010,46(10):1-7.
[7]何改云,刘欣,刘佩佩,等.基于分割球面逼近的复杂曲面轮廓度误差评定[J].计算机集成制造系统,2013,19(03):474-479.
[8]何改云,刘欣,刘佩佩,等.基于分割球面逼近和差分进化的复杂曲面轮廓度误差评定[J].中国机械工程,2014,25(2):152-156.
[9]王宇春,孙和义,唐文彦,等.评定二次曲面轮廓度误差的角度分割逼近法[J].光学精密工程,2014,22(6):1606-1612.
[10]廖平.基于遗传算法的椭球面形状误差精确计算[J].仪器仪表学报,2009,30(4):780-785.
[11]Rafajlowicza E, Schwabe R. Halton and hammersley sequences in multivariate nonparametric regression [J]. Statistics & Probability Letters, 2006, 76(8):803-812. |
|
|
|