|
|
Development of a High Precision Constant-temperature Chamber for Micro-nanometric CMM |
FENG Jian1,LI Rui-jun1,HE Ya-xiong1,FAN Kuang-chao1,2 |
1. School of Instr Sci & Opto-electric Engineering, Hefei University of Technology, Hefei, Anhui 230009, China;
2. Department of Mechanical Engineering, Taiwan University, Taipei 10617,China |
|
|
Abstract The spacious constant-temperature room and the separated constant-temperature chambers can’t meet the requirement of micro-nanometric CMM because of low precision and vibration seperately. A high precision constant-temperature chamber based on the natural convection principle is developed. The walls of the custom-designed chamber is made of hollow acrylic upon which a lightweight thin vacuum insulation plate with ultra-low thermal conductivity coefficient is adhered. The temperature value of the instrument measuring point is taken as the feedback signal. Nine thermoelectric coolers used to cool the air inside the chamber are arranged on the ceiling of the chamber uniformly. The down flowing cool air and the up flowing hot air forms natural convection. The program of the high accuracy temperature-controlled system is developed using LabVIEW and MATLAB software. The experimental results show that the system steady-state error is 0.0032 ℃ on average, and the variation range is less than 0.03 ℃ when the set temperature is 20 ℃. It is superior to a Class I standard room. The new type constant-temperature chamber has the advantages of low cost, low energy consumption and no vibration.
|
|
|
|
|
[1]李洪波,高思田,崔建军.微米、纳米尺度测量环境的温度测量和控制技术[J].计量学报, 2009, 30(z1): 32-37.
[2]杨庆东, Vanherck P, Kruth J P,等.三坐标测量机的热变形和神经网络误差补偿[J]. 计量学报, 2000, 21(2):113-118.
[3]赵英剑,王建利,马新辉,等.三坐标测量机智能技术[J]. 计量学报, 2001, 22(3): 164-167.
[4]International Organization for Standardization. ISO 14644, Cleanrooms and associate controlled environments[S].
[5]Xu T F. Best Practice for Energy Efficient Cleanrooms: Minienvironments[R]. LBNL-58638, 2005.
[6]Fan K C, Wang H M, Liu Y C. Development of a Constant Temperature Environment Chamber with High Stability[J]. Materials Science Forum, 2008, 594(11): 78-83.
[7]Kramar J A. Nanometre resolution metrology with the molecular measuring machine[J]. Measurement Science and Technology, 2005,16(11): 2121-2128.
[8]Furutani R, Shimojima K, Takamasu K, et al. Parameter calibration for non-cartesian CMM[J]. VDI Berichte, 2004, (1860): 317-326.
[9]王宪平,李圣怡. 超精密环境温度控制及温度测量技术研究[J]. 中国机械工程, 2000, 11(8): 869-871.
[10]李洪波,赵维谦,高思田,等. 高性能恒温环境的设计及MAX1978性能测试[J]. 计量学报, 2010, 31(z2): 216-221.
[11]张辉. 微纳米测量环境控制机理及系统研究[D].合肥:合肥工业大学, 2009.
[12]李云彬. 高精密宽温测量与控制系统研制[D].合肥:合肥工业大学, 2012.
[13]Fan K C, Cheng F, Wang H Y, et al. The system and the mechatronics of a pagoda type micro-CMM[J]. International Journal of Nanomanufacturing. 2012,8(1):67-86.
[14]Fan K C, Fei Y T, Yu X Y, et al. Development of a low-cost micro-CMM for 3D micro/nano measurements[J]. Measurement Science and Technology, 2006,17(3): 524-532.
[15]Simmler H, Brunner S, Heinemann U, et al. Vacuum Insulation Panels-Study on VIP components and panels for service life prediction of VIP in building applications[R]. Subtask A. 2005, 3-34.
[16]Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas-A review[J]. Energy and Buildings, 2012, 54:320-336.
[17]程方. 纳米三坐标测量机测控系统关键技术研究[D]. 合肥:合肥工业大学, 2010.
[18]张涛,钟莹,冷长林,等. 基于Labview和Matlab的多普勒信号的处理[J]. 计量学报, 2008,29(2): 138-141.
[19]沈才忠, 周连琴,蔡伟勇. WJ-1型高精度温度校验箱[J]. 计量学报, 2007,28(z1): 118-120.
[20]柯维娜, 朱定强,蔡国飙. 温度控制技术的发展与应用[J]. 计量学报, 2007, 28(z1): 178-184.
[21]SIOS. Miniature Retroreflector Interferometer[DB]. http://www.sios.de/ENGLISCH/PRODUKTE/MI_engl_2014.pdf. 2014-3.
|
|
|
|