16 |
ZARE S, AYATI M. Simultaneous fault diagnosis of wind turbine using multichannel convolutional neural networks [J]. ISA Transactions, 2021, 108: 230-239.
|
3 |
余志锋, 熊邦书, 欧巧凤, 等. 基于VMD-CWT和改进CNN的直升机轴承故障诊断 [J]. 航空动力学报, 2021, 36(5): 948-958. YU Z F, XIONG B S, OU Q F, et al. Helicopter bearing fault diagnosis based on VMD-CWT and improved CNN [J]. Journal of Aerospace Power, 2021, 36(5): 948-958.
|
1 |
胡向东, 梁川, 杨希. 基于时频增强的滚动轴承少样本故障诊断方法 [J]. 计量学报, 2023, 44(1): 12-20. HU X D, LIANG C, YANG X. Fault diagnosis method for rolling bearing with few samples based on time-frequency enhancement [J]. Acta Metrologica Sinica, 2023, 44(1): 12-20.
|
5 |
WEN L, GAO L, LI X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(1) : 136-144.
|
8 |
ZHANG W, LI C, PENG G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
|
11 |
XIA M, LI T, XU L, et al. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks [J]. IEEE-ASME Transactions on Mechatronics, 2018, 23(1): 101-110.
|
13 |
ZHANG W, LI C, PENG G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
|
15 |
ZHANG J, SUN Y, GUO L, et al. A new bearing fault diagnosis method based on modified convolutional neural networks [J]. Chinese Journal of Aeronautics, 2020,33(2): 439-447.
|
18 |
CHEN L, An K, HUANG D, et al. Noise-boosted convolutional neural network for edge-based motor fault diagnosis with limited samples [J]. IEEE Transactions on Industrial Informatics, 2022, 19(9): 9491-9502.
|
21 |
侯东晓, 周子安, 程荣财, 等. 基于GADF-TL-ResNeXt的滚动轴承故障诊断方法 [J]. 计量学报, 2023, 44(10): 1534-1542. HOU D X, ZHOU Z A, CHENG R C, et al. Fault diagnosis method of rolling bearing based on GADF-TL-ResNeXt [J]. Acta Metrologica Sinica, 2023, 44(10): 1534-1542.
|
23 |
WANG Q, WU B, ZHU P F, LiPeihua, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// IEEE/CVF conference on computer vision and pattern recognition, Seattle, America, 2020.
|
25 |
ZHAO M, ZHONG S, FU X, et al. Deep Residual Shrinkage Networks for Fault Diagnosis [J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
|
2 |
金江涛, 许子非, 李春, 等. 基于VMD能量熵与优化支持向量机的轴承故障诊断 [J]. 计量学报, 2021, 42(7): 898-905. JIN J T, XU Z F, LI C, et al. Bearing fault diagnosis based on VMD energy entropy and optimization support vector machine [J]. Acta Metrologica Sinica, 2021, 42(7): 898-905.
|
4 |
SHAO H, JIANG H, ZHANG H, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network [J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736.
|
6 |
金海龙, 马吴旭, 孟宗, 等. 基于改进1DCNN-GRU的滚动轴承故障诊断 [J]. 计量学报, 2023, 44(9): 1423-1428. JIN H L, MA W X, MENG Z, et al. Fault diagnosis of rolling bearings based on improved 1DCNN-GRU [J]. Acta Metrologica Sinica, 2023, 44(9): 1423-1428.
|
7 |
JIANG G, HE H, YAN J, et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine Gearbox [J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3196-3207.
|
9 |
NIU G, LIU E, WANG X, et al. Enhanced discriminate feature learning deep residual CNN for multitask bearing fault diagnosis with information fusion [J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 762-770.
|
10 |
陈剑, 孙太华, 黄凯旋, 等. 基于直方图均衡化和卷积神经网络的轴承故障诊断方法 [J]. 计量学报, 2022, 43(7): 907-912. CHEN J, SUN T H, HUANG K X, et al. Bearing fault diagnosis method based on histogram equalization and convolutional neural network [J]. Acta Metrologica Sinica, 2022, 43(7): 907-912.
|
12 |
INCEE T, KIRAN S, EREN L, et al. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075.
|
14 |
LI T, CHEN X, YAN R, et al. WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2302-2312.
|
17 |
ZHAO M, JIA X. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery [J]. Mechanical Systems and Signal Processing, 2017, 94: 129-147.
|
19 |
YANG C, QIAO Z, ZHU R, et al. An intelligent fault diagnosis method enhanced by noise injection for machinery [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
|
26 |
刘俊孚, 岑健, 黄汉坤, 等. 零小样本旋转机械故障诊断综述 [J]. 计算机工程与应用, 2024, 60(15): 42-54. LIU J F, CEN J, HUANG H K, et al. Review on zero or few sample rotating machinery fault diagnosis [J]. Computer Engineering and Applications, 2024, 60(15): 42-54.
|
20 |
万周, 何俊增, 姜东, 等. 基于参数优化SDP分析的转子故障诊断方法 [J]. 振动与冲击, 2023, 42(1): 81-88. WAN C, HE J Z, JIANG D, et al. Rotor fault diagnosis method based on parameter optimization SDP analysis [J]. Journal of Vibration and Shock, 2023, 42(1): 81-88.
|
24 |
ZHANG W, PENG G, LIC, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals [J]. Sensors, 2017,17(2):425.
|
22 |
RUIZ M, MUJICA L E, ALF S, et al. Wind turbine fault detection and classification by means of image texture analysis [J]. Mechanical Systems and Signal Processing, 2018, 107: 149-167.
|