|
|
A Signals Feature Extraction Method Based on the EEMD and Chaotic and Its Application |
ZHANG Shu-qing,DONG Xuan,ZHAI Xin-pei,GONG Zheng |
Institute of Electrical Engineering, Yanshan University, Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, Hebei 066004, China |
|
|
Abstract A method of feature extraction combining ensemble empirical mode decomposition (EEMD) with chaotic, and its application to the asthma detection in infants breathing signal are described. The partial infant breathing signal was decomposed by EEMD into a series of frequency mode components, which spread from high frequency components to low ones. The correlation between each component and partial signals was analyzed and the Hilbert spectral for major components was listed. From the partial signal, it may be generally determined whether the child suffered asthma. Then, the frequency calculated by EEMD from partial signals was chosen as the chaotic oscillator frequency to detect and analyse global breathing signals. It could express the original breathing signal frequency from the intermittent cycle of chaotic time-domain waveform, and confirm the result for infant asthma detection eventually. The EEMD and chaos algorithms were improved in order to succeed in their application. The method was put into the real data analysis and its efficiency was verified. It reflects the signals information correctly and has a high accuracy.
|
|
|
|
|
[1]张淑清. 基于小波变换和混沌理论的机械故障诊断理论及应用研究[D]. 秦皇岛: 燕山大学, 2003.
[2]关贞珍, 郑海起, 杨云涛, 等. 基于经验模态分解和Duffing振子的轴承故障诊断[J]. 农业机械学报, 2010, 41(9): 214-217.
[3]王宏, Narayanan R M, 周正欧, 等. 基于改进EEMD的穿墙雷达动目标微多普勒特性分析[J]. 电子与信息学报, 2010, 32(6): 1355-1360.
[4]陈可, 李野, 陈澜. EEMD分解在电力系统故障信号检测中的应用[J]. 计算机仿真,2010, 27(3): 263-266.
[5]张淑清, 上官寒露, 袁计委,等. 基于内禀模态能量比呼吸信号特征参数提取方法[J]. 仪器仪表学报,2010, 31(8): 1706-1711.
[6]戴桂平.基于EMD近似熵和DAGSVM的机械故障诊断[J]. 计量学报,2010,31(5):467-471.
[7]谢平,王欢,杜义浩.基于EMD和Wigner-Ville分布的机械故障诊断方法研究[J]. 计量学报,2010,31(5):390-394.
[8]曹冲锋, 杨世锡, 杨将新. 大型旋转机械非平稳振动信号的EEMD降噪方法[J]. 振动与冲击, 2009, 28(9): 33-38.
[9]Zhaohua Wu, Norden E Huang. Ensemble Emperical Mode Decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[10]张鑫, 陈伟斌, 姚明海. Duffing振子检测微弱正弦信号的普遍性研究[J]. 计算机与数字工程,2005, 33(12): 71-73.
[11]姜万录, 张淑清, 王益群. 基于混沌和小波的故障信息诊断[M]. 北京: 国防工业出版社, 2005: 95-96.
[12]Zhang Shuqing, Jin Shijiu, Lv Jiangtao, et al. Approach of Improving Precision in Ultrasonic Doppler Bloodsttream Speed Measurement by Chaos-based Frequency Detecting[J]. Journal of Electronics(China), 2006, 23(3): 457-460.
[13]李琳, 张永祥, 明廷涛. EMD降噪的关联维数在齿轮故障诊断中的应用研究[J]. 振动与冲击,2009, 28(4): 145-148.
[14]崔玲丽, 高立新, 张建宇, 等. 基于EMD的复合故障诊断方法[J]. 北京科技大学学报,2008, 30(9): 1055-1060.
[15]Zhang S Q, Jin S J, Yang F L, et al. Crucial technologies of oil transportingpipe leak detection and location based on wavelet and chaos[J]. Mesurement Science and Technology (MST). UK, 2006, 17(3):572-577.
[16]Norden E Huang, Zheng Shen, Steven R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454(1971): 903-995.
[17]Zhang Shuqing, Spurgeon Sarah K, Zhang Liguo. Wavelet Packet-based Identification of Complex Oscillation in Biological Signals[J]. 仪器仪表学报,2008, 29(2): 225-232.
[18]吴伟, 蔡培生. 基于MATLAB的小波去噪仿真[J]. 信息与电子工程,2008. 6(3): 220-222. |
|
|
|