|
|
Research on the Separation and Noise Reduction Method of Spindle Radial Rotation Error Based on LSTM-GRU Neural Network |
CHI Yulun,LI Ximing,ZHU Wenbo,YU Jianhua |
Research on the Separation and Noise Reduction Method of Spindle Radial Rotation Error Based on LSTM-GRU Neural Network |
|
|
Abstract The frequency domain three-probe method is a common method for separating spindle rotation errors. Its error separation accuracy is greatly affected by the noise in the measured signal. Inappropriate noise reduction methods will distort the test results. To this end, a spindle rotation error separation and noise reduction method based on LSTM-GRU neural network is proposed.First, a test system is built using the optimized sensor angle by genetic algorithms and the spindle rotation error signal is acquired.Then, the Kalman filter is configured to reduce the noise of the three sensor signals, the synchronous rotation error and asynchronous rotation error are separated by the three-probe method in frequency domain.Finally, the LSTM-GRU model is used to reduce the noise of synchronous and asynchronous rotation error respectively.The noise reduction results of the LSTM-GRU model are compared with the results of LSTM-LSTM model、Kalman filtering and Wavelet threshold denoise methods.The Allan variance is calculated to evaluate the noise reduction effect of different methods.The experimental result shows that after noise reduction using the LSTM-GRU model, the Allan variance of the synchronous rotation error is 2.014×10-8mm2 and the Allan variance of the asynchronous rotation error is 3.967×10-8mm2, which are both less than the results of Kalman filtering and Wavelet threshold noise reduction.The noise reduction effect of the LSTM-GRU model is optimal.The asynchronous rotation error of the spindle at the test speed of 6000r/min is 2.42μm and the asynchronous rotation error is 3.21μm, which meets the actual situation.
|
Received: 25 December 2023
Published: 29 November 2024
|
|
|
|
|
|
HIRONAO A, NARUO O. Three-point method roundness measuring machine [J]. Mechanical Research, 1978, 30(6): 753-759.
|
|
WANG S H. Research on on-line dynamic testing technology of high-speed and high-precision spindle rotational error[D]. Guangzhou: Guangdong University of Technology, 2006.
|
[1] |
马军旭, 赵万华, 张根保. 国产数控机床精度保持性分析及研究现状 [J]. 中国机械工程, 2015, 26(22): 3108-3115.
|
[3] |
ISO 230-7 (2015) Test code for machine tools. Part 7: Geometric accuracy of axes of rotation, International Standardization Organization[S]. Geneva, Switzerland: International Organization of Standardization, 2015.
|
[4] |
LEE J, GAO W, SHIMIZU Y, et al. Spindle Error Motion Measurement of a Large Precision Roll Lathe [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 861-867.
|
[5] |
SHI S, ZHANG H, QU J, et al. Measurement uncertainty propagation in spindle error separation techniques-Investigation by means of stochastic spectral method [J]. International Journal of Machine Tools and Manufacture, 2019, 141: 36-45.
|
[7] |
LION PRECISION. Spindle Measurement RPM and Bandwidth[EB/OL][2022-03-05]. https: //www. lionprecision. com/spindle-measurement-rpm-and-bandwidth.
|
[10] |
TOGUEM TAGNE S C, VISSIERE A, DAMAK M, et al. An advanced Fourier-based separation method for spindle error motion identification [J]. Precision Engineering, 2021, 74: 334-346.
|
[12] |
CASTRO H. F. F. A method for evaluating spindle rotation errors of machine tools using a laser interferometer [J]. Measurement, 2008, 41(5): 526-537.
|
|
GU Q T. Using the kalman filter approach for the evaluation of roundness errors [J]. Acta Metrologica Sinica, 1990,11(2): 124-129
|
[14] |
周继昆, 张荣, 凌明祥. 基于三点法的机床主轴回转误 差在线测试技术研究 [J]. 计算机测量与控制, 2018, 26(3): 58-61.
|
[17] |
冯明, 杜德渝, 王新杰,等. 精密主轴回转误差和刚度测试技术研究 [J]. 机械工程学报, 2021, 57(13): 18-25.
|
[21] |
井小浩, 贠卫国, 韩世鹏. 基于深层循环神经网络的陀螺仪降噪方法研究 [J]. 空间控制技术与应用, 2020, 46(5): 65-72.
|
|
CHEN L S, LIU W B. Sensor position optimization method in three-point method [J]. Machine China, 2014(17): 234-235.
|
[6] |
青木保雄, 大园成夫. 三点法圆度测量机 [J]. 机械研究, 1978, 30(6): 753-759.
|
[11] |
张坤. 主轴运动误差测试方法研究[D]. 北京: 北京科技大学, 2018.
|
[13] |
顾启泰. 卡尔曼滤波方法在圆度误差评定中的应用 [J]. 计量学报, 1990,11(2): 124-129.
|
[15] |
FUJIMAKI K, SASE H, MITSUI K. Effects of sensor noise in digital signal processing of the three-point method [J]. Measurement Science and Technology, 2008, 19(1): 1-9.
|
|
FENG M, DU D Y, WANG X J, et al. Research on precision spindle rotational error and stiffness testing technology [J]. Journal of Mechanical Engineering, 2021, 57(13): 18-25.
|
[19] |
MOHAMED A. El-BRAWANY, DINA A I, et al. Artificial intelligence-based data-driven prognostics in industry: A survey [J]. Computers Industrial Engineering, 2023, 184: 1-13.
|
[22] |
HAN S P, MENG Z, ZHANG X C, et al. Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions [J]. Micromachines, 2021, 12(2): 214-237.
|
[25] |
XIANG K, WANG W, QIU R, et al. A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles [J]. Sensors, 2017, 17(9): 1975-2000.
|
[26] |
YIN T, TO S, DU H, et al. Effects of wheel spindle error motion on surface generation in grinding [J]. International Journal of Mechanical Sciences, 2022, 218: 1-19.
|
|
ZOU X F, LU X Y. Estimate method of MEMS gyroscope performance based on allan variance [J]. Micronanoelectronic Technology, 2010, 47(8): 490-493.
|
|
WU X J, GUI Y H, WANG A C, et al. Vehicle trajectory prediction based on LSTM-GRU integrating dropout and attention mechanism [J]. Journal of Hunan University(Natural Science), 2023, 50(4): 65-75.
|
[2] |
FANG Z X, CHEN Z Z, TAO F, et al. Simultaneous calibration of probe parameters and location errors of rotary axes on multi-axis CNC machines by using a sphere [J]. Measurement, 2022, 188: 1-15.
|
[9] |
CHEN Y, ZHAO X, GAO W, et al. A novel multi-probe method for separating spindle radial error from artifact roundness error [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(4): 623-634.
|
[16] |
冯明, 周程瑜, 张坤,等. 回转误差测试中系统噪声分离技术 [J]. 北京航空航天大学学报, 2020, 46(4): 666-673.
|
[23] |
CAPPA S, REYNAERTS D, AL-BENDER F. A sub-nanometre spindle error motion separation technique [J]. Precision Engineering, 2014, 38(3): 458-471.
|
[30] |
BAI J, WANG Y Z, WANG X H, et al. Three-Probe Error Separation with Chromatic Confocal Sensors for Roundness Measurement [J]. Nanomanufacturing and Metrology, 2021, 4(4): 247-255.
|
|
MA J X, ZHAO W H, ZHANG G B. Research Status and Analyses on Accuracy Retentivity of Domestic CNC Machine Tools [J]. China Mechanical Engineering, 2015, 26(22): 3108-3115.
|
[8] |
王少蘅. 高速高精密主轴回转误差在线动态测试技术研究[D]. 广州: 广东工业大学, 2006
|
|
ZHOU J Q, ZHANG R, LING M X. Research on online testing technology of machine tool spindle rotary error based on three-point method [J]. Computer Measurement & Control, 2018, 26(3): 58-61.
|
|
JING S H, YUN W G, HAN S P. Gyroscope Noise Reduction Method Based on DeepCirculation Neural Networks [J]. Aerospace Control and Application, 2020, 46(5): 65-72.
|
[29] |
陈良深, 刘文斌. 三点法中传感器位置优化方法 [J]. 中国机械, 2014(17): 234-235.
|
|
FENG M, ZHOU C Y, ZHANG K, et al. Systematic noise separation technique in slewing error testing [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 666-673.
|
[18] |
ANANDAN P K, OZDOGANLAR B O. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles [J]. Precision Engineering, 2016, 43: 119-131.
|
[20] |
YANG H, ZHANG J, LI S, et al. Bi-direction hierarchical LSTM with spatial-temporal attention for action recognition. [J]. Journal of Intelligent and Fuzzy Systems, 2019, 36(1): 775-786.
|
[24] |
DING F, LUO X, CHANG W, et al. In Situ Measurement of Spindle Radial and Tilt Error Motions by Complementary Multi-probe Method [J]. Nanomanufacturing and Metrology, 2019, 2(4): 225-234.
|
[27] |
邹学锋, 卢新艳. 基于Allan方差的MEMS陀螺仪性能评价方法 [J]. 微纳电子技术, 2010, 47(8): 490-493.
|
[28] |
吴晓建, 危一华, 王爱春,等. 基于融合Dropout与注意力机制的LSTM-GRU车辆轨迹预测 [J]. 湖南大学学报(自然科学版), 2023, 50(4): 65-75.
|
|
|
|