|
|
Accuracy Analysis of Refraction Error Correction Models in Three-axis Photogrammetry |
ZHANG Bo1,MU Chunmei1,2,PAN Qiang1,LI Yanxia1,YANG Jin1 |
1. College of Civil Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
2. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin, Guangxi 541004, China |
|
|
Abstract Photogrammetric technique applied to triaxial test can realize the non-contact measurement of soil sample deformation, however the measurement accuracy of the method is susceptible to the refraction influence of different media. To solve the problem, firstly, the photogrammetric method is verified to have high measurement accuracy without the influence of refraction by measuring the distance of the plane artificial coding points and the axial and radial lengths of the rigid cylinders in air; but the light will be affected by the refraction of different mediums, such as the air, the organic glass cover and water in the pressure chamber, which results in a large measurement error. In order to eliminate the effect of refraction, the three-dimensional refraction error correction model is applied to the triaxial test of saturated mixed soil, and the test results are analyzed for accuracy from axial and radial directions. The test results show that:1) the effect of refraction amplification on the axial measurement accuracy of triaxial soil samples is very small and negligible, but the effect on the radial measurement is larger, which needs to be corrected by the refraction error; 2) after the error correction, the absolute and relative errors of the radial measurements of triaxial soil samples are 0.120mm and 0.59%, respectively, indicating that the refraction error correction model can improve the accuracy of triaxial photogrammetry.
|
Received: 05 December 2023
Published: 29 November 2024
|
|
|
|
|
[2] |
许家宁, 邓亚虹, 徐召, 等. 三轴试验非饱和土体积变化测量方法综述[C]// 中国地质学会. 2018年全国工程地质学术年会论文集. 2018: 499-504.
|
[5] |
邵龙潭, 郭晓霞, 刘港, 等. 数字图像测量技术在土工三轴试验中的应用 [J]. 岩土力学, 2015, 36(S1): 669-684.
|
[12] |
牟春梅, 吴浩杰, 黄少染, 等. 基于数字图像测量的三轴土样变形测量方法综述 [J]. 桂林理工大学学报, 2021, 41(4): 823-830.
|
[17] |
王勇, 梁基超. 基于测量不确定度的测量过程特性分析 [J]. 计量学报, 2022, 43(9): 1241-1244.
|
[18] |
闵帅博, 严利平, 崔建军, 等. 高精度空气折射率测量系统设计与实现 [J]. 计量学报, 2020, 41(11): 1332-1338.
|
[1] |
蔡阳, 李林, 陆毅. 三轴试样绝对体积测量方法研究[J].岩土工程学报, 2021, 43(12): 2300-2307.
|
|
CAI Y, LI L, LU Y. Measuring absolute volume of triaxial soil specimen [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2300-2307.
|
[3] |
CHANEY R, DEMARS K, MACARI E, et al. Measurement of Volume Changes in Triaxial Tests Using Digital Imaging Techniques [J]. Astm Geotechnical Testing Journal, 1997, 20(1): 103-109.
|
[6] |
ZHANG X, LI L, CHEN G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing [J]. Acta Geotechnica, 2015, 10(1): 55-82.
|
[9] |
刘思远. 端部约束对三轴排水剪试验影响的数值分析 [J]. 河北工程大学学报(自然科学版), 2019, 36(3): 62-66.
|
|
LIU S Y. Numerical Analysis of the Effects of the End Restraint on the Drained Triaxial Test [J]. Journal of Hebei University of Engineering(Natural Science Edition), 2019, 36(3): 62-66.
|
|
ZHANG S, YANG D H. Key Technology Application of 3D Modeling of Two Dimensional Image in Digital Close Range Photogrammetry [J]. Software, 2018, 39(2): 133-138.
|
[16] |
张伦, 余涛, 顾行发, 等. 基于光线追踪的尺度效应分析 [J]. 计算机工程, 2014, 40(4): 242~246.
|
[19] |
谭泽祥, 董明利, 燕必希, 等. 基于摄影测量的基准尺长度测量系统的调节与误差分析 [J]. 计量学报, 2017, 38(5): 553-558.
|
[21] |
李抵非, 陈赫, 冯志刚, 等. 一种双目立体视觉系统的校准方法 [J]. 计量学报, 2018, 39(4): 485-489.
|
[22] |
李鹤喜, 李威龙. 基于可变形卷积的双目视觉三维重建 [J]. 计量学报, 2022, 43(6): 737-745.
|
[7] |
LI L, ZHANG X, CHEN G, et al. Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method [J]. Can Geotech Journal, 2016, 53(3): 472-489.
|
[13] |
XIA Y, MU C, LI W, et al. Study of Dynamic Evolution of the Shear Band in Triaxial Soil Samples Using Photogrammetry Technology [J]. Sustainability, 2022, 14(21): 14660.
|
[14] |
李林, 沈珂任, 王林, 等. 三轴试样全息变形实时测量系统的搭建、验证与应用 [J]. 土木工程学报, 2023, 56(8): 108-117.
|
[15] |
LI L, LI P, CAI Y, et al. Visualization of non-uniform soil deformation during triaxial testing [J]. Acta Geotechnica, 2021, 16(11): 3439-3454.
|
|
TAN Z X, DONG M L, YAN B X, et al. Adjustment and Error Analysis of the Length Measurement System for the Scale-bar Based on Photogrammetry [J]. Acta Metrologica Sinica, 2017, 38(5): 553-558.
|
|
ZHANG Y, ZHOU X J, YANG X T. Human Motion Measurement System Based on Monocular Videos [J]. Acta Metrologica Sinica, 2019, 40(3): 367-372.
|
[23] |
范亚兵, 黄桂平, 姚思远, 等. 三目立体摄影测量系统中相机标定技术研究 [J]. 计量学报, 2015, 36(2): 132-135.
|
[24] |
曹文意, 陈继民, 袁艳萍, 等. 基于多视图的三维模型采集系统的研制 [J]. 计量学报, 2019, 40(6): 1000-1005.
|
|
CAO W Y, CHEN J M, YUAN Y P, et al. Research on 3D Model Acquisition System Based on Multiple View [J]. Acta Metrologica Sinica, 2019, 40(6): 1000-1005.
|
|
GUO Z Y. Application of Total Least Square Method in Parameter Calibration of Non-metric Camera [J]. Geomatics & Spatial Information Technology, 2022, 45(11): 201-203.
|
[26] |
程效军, 许诚权, 周行泉. 基于PhotoModeler Scanner的普通数码相机快速检校研究 [J]. 遥感信息, 2011, 2011(4): 80-84+89.
|
[27] |
赵明志, 邓龙翔, 刘钢, 等. 不同细粒含量高压密级配碎石力学特性研究 [J]. 铁道科学与工程学报, 2021, 18(5): 1121-1130.
|
[28] |
GACHET P, GEISER F, LALOUI L, et al. Automated Digital Image Processing for Volume Change Measurem-ent in Triaxial Cells [J]. Geotechnical Testing Journal, 2007, 30(2): 98-103.
|
|
SHAO L T, GUO X X, LIU G, et al. Application of digital image processing technique to measuring specimen deformation in triaxial test [J]. Rock and Soil Mechanics, 2015, 36(S1): 669-684.
|
|
MU C M, WU H J, HUANG S R, et al. Review on triaxial soil sample deformation measurement methods based on photogrammetry [J]. Journal of Guilin University of Technology, 2021, 41(4): 823-830.
|
|
MIN S B, YAN L P, CUI J J, et al. Design and Implementation of High Precision Air Refractive Index Measurement System [J]. Acta Metrologica Sinica, 2020, 41(11): 1332-1338.
|
|
FAN Y B, HUANG G P, YAO S Y, et al. Study on the Techniques of camera Calibration in the Trinocular Stereo Photogrammetry System [J]. Acta Metrologica Sinica, 2015, 36(2): 132-135.
|
[4] |
WHITE D, TAKE W, BOLTON M. Measuring soil deformation in geotechnical models using digital images and PIV analysis [C]//10th international conference on computer methods and advances in geomechanics. Rotterdam, Netherlands, 2001.
|
[11] |
XIA X, ZHANG X, MU C. A multi-camera based photogrammetric method for three-dimensional full-field displacement measurements of geosynthetics during tensile test [J]. Geotextiles and Geomembranes, 2021, 49(5): 1192-1210.
|
|
WANG Y, LIANG J C. Analysis of Measurement Process Characteristics Based on Measurement Uncertainty [J]. Acta Metrologica Sinica, 2022, 43(9): 1241-1244.
|
|
LI H X, LI W L. Binocular Vision 3D Reconstruction Based on Deformable Convolution [J]. Acta Metrologica Sinica, 2022, 43(6): 737-745.
|
|
ZHAO M Z, DENG L X, LIU G, et al. Research on mechanical properties of high pressure densely graded gravel with different fine particle content [J]. Journal of Railway Science and Engineering, 2021, 18(5): 1121-1130.
|
[8] |
LI L, ZHANG X. Evaluate the Accuracy of the Photogrammetry-Based Deformation Measurement Method [C]//Transportation Research Board 95th Annual Meeting. Washington DC, United States, 2016.
|
[10] |
张数, 杨德宏. 数字近景摄影测量的二维影像三维建模的关键技术应用 [J]. 软件, 2018, 39(2): 133-138.
|
|
LI L, SHEN K R, WANG L, et al. Set up, validation, and application of a full-field real-time deformation measurement system for triaxial specimen [J]. China Civil Engineering Journal, 2023, 56(8): 108-117.
|
|
ZHANG L, YU T, GU X F, et al. Scale Effect Analysis Based on Ray Tracing [J]. Computer Engineering, 2014, 40(4): 242~246.
|
[20] |
张烨, 周晓晶, 杨晓童. 基于单目视频的人体运动测量系统 [J]. 计量学报, 2019, 40(3): 367-372.
|
|
LI D F, CHEN H, FENG Z G, et al. A Calibration Method of Binocular Vision System [J]. Acta Metrologica Sinica, 2018, 39(4): 485-489.
|
[25] |
郭中佑. 整体最小二乘法在非量测型相机检校中的应用 [J]. 测绘与空间地理信息, 2022, 45(11): 201-203.
|
|
CHENG X J, XU C Q, ZHOU X Q. A Research on Rapid Calibration of Ordinary Digital Camera Based on PhotoModeler Scanner System [J]. Remote Sensing Information, 2011, 2011(4): 80-84+89.
|
|
|
|