|
|
Image Analysis Method of Sand and Soil Particle Gradation Based on Mean Sampling Principle |
SHANG Fulei,LIAN Jifeng,LI Xiaoning,LIU Yu,LEI Zhijie,HU Yaozhong |
School of Emergency Management, Xihua University, Chengdu, Sichuan 610039,China |
|
|
Abstract Particle grading is one of the key parameters affecting the mechanical properties of roadbed fill. The traditional sieving method is difficult to refine and quickly determine the sandy soil particle group due to the large interval between sieve diameters. A new method for estimating the sandy soil particle gradation based on image scanning and mean sampling technology is proposed. The method is based on the scanning electron microscope(SEM) and image processing software ImageJ joint testing technology to determine the geometric parameters of the sand particle morphology. The difference in the distance between any two parallel tangent lines of irregular particles on the projected image contour, namely the Feret diameter as the equivalent diameter of an ideal sphere is discussed, and the equivalent area and volume equations for a single sand particle are established. Based on the general rule that the relative density of sand particles gradually increases with the decrease of particle size, a negative power function model between sand particle size and relative density is fitted, and a function expression for the mass and particle size of a single sand particle is established. Finally, the accuracy of the arithmetic mean method and mean sampling method for sand particle grading is examined by sieving method. The results show that the relative error of ImageJ in identifying sandy soil particles of millimeter level and below depends on the difference between particle size and scale length, that is, when the particle size is smaller than the scale length, the larger the difference, the lower the measurement accuracy. When the particle size approaches or exceeds the length of the scale, the measurement accuracy is higher and more stable. The arithmetic mean method shows strong randomness and is not suitable as a basis for determining the grading parameters of sand particles. The grading curve of sandy soil particles obtained by the mean sampling method with short diameter is the most consistent with the results of the sieve method, which can be used for the estimation of sandy soil particles grading parameters, followed by average diameter, long diameter. The new method can arbitrarily divide sand particle groups and obtain relatively accurate grading parameters, with reliable results and convenient operation.
|
Received: 10 November 2023
Published: 29 November 2024
|
|
|
|
|
[32] |
张晓军. 塔尔露天煤矿边坡粉土土水特征曲线试验研究[J]. 煤炭工程, 2019, 51(8): 135-139.
|
[33] |
周富华, 罗世毅, 孙即超. 南宁环城高速公路K18路堑滑坡形成机制与综合处治对策[J]. 公路交通科技, 2007, 24(7): 44-47.
|
[2] |
王家全, 仲文涛, 唐滢, 等. 颗粒级配对砾性土填料加筋前后的动力特性影响分析[J]. 华北水利水电大学学报(自然科学版), 2023, 44(1): 93-99.
|
[3] |
陈爱云, 郭建湖. 武广客运专线软岩填筑路基的模型试验研究[J]. 岩土力学, 2008, 29(10): 2882-2886.
|
[6] |
钟永达, 李彦强, 刘立盘, 等. 基于扫描仪和ImageJ软件的香樟种子测量与种源分析[J]. 西南林业大学学报(自然科学), 2017, 37(6): 48-53.
|
[11] |
毕利东, 张斌, 潘继花. 运用Image J软件分析土壤结构特征[J]. 土壤, 2009, 41(4): 654-658.
|
|
HONG M H, XU C, ZENG W Z, et al. Research on pore structure and fractal characteristics of saline soil[J]. China Rural Water Conservancy and Hydropower, 2017(7): 54-58.
|
[1] |
东南大学, 浙江大学, 湖南大学, 苏州科技学院. 土力学 [M]. 第2版. 北京: 中国建筑工业出版社, 2005.
|
|
WANG J Q, ZHONG W T, TANG Y, et al. Analysis of the effect of dynamic properties of gravelly soil fill before and after reinforcement[J]. Journal of North China University of Water Resources and Hydropower (Natural Science Edition) , 2023, 44(1): 93-99.
|
|
CHEN A Y, GUO J H. Modeling study on soft rock fill roadbed of Wuhan-Guangzhou passenger dedicated line[J]. Geotechnical Mechanics, 2008, 29(10): 2882-2886.
|
[5] |
冯亚婕, 王建民, 梁淼, 等. 基于ImageJ的卷烟包灰值定量测定方法优化[J]. 食品与机械, 2018, 34(3): 216-219.
|
[10] |
徐祖新, 郭少斌. 基于氩离子抛光-SEM和ImageJ软件的页岩储层孔隙结构分析——以中扬子地区陡山沱组为例[J]. 东北石油大学学报, 2014, 38(4): 45-51.
|
|
BI L D, ZHANG B, PAN J H. Analysis of soil structural characteristics using Image J software[J]. Soil, 2009, 41(4): 654-658.
|
[15] |
王有鹏, 李德文, 王锦鹏. 金沙江巧家段冲积物动态图像法粒度特征研究[J]. 地质论评, 2019, 65(2): 503-513.
|
[4] |
徐炜桢, 许东, 林亲录, 等. 基于手机拍照和ImageJ软件的大米外观形状参数的测定[J]. 中国粮油学报, 2019, 34(10): 109-113.
|
|
ZHONG Y D, LI Y Q, LIU L P, et al. Measurement and seed source analysis of balsam fir seeds based on scanner and ImageJ software[J]. Journal of Southwest Forestry University (Natural Science), 2017, 37(6): 48-53.
|
|
ZHANG J W, HE G, WANG J C. Accuracy of infrared image recognition of liquid intervening hard-to-identify gangue at different mixing degrees[J]. Journal of Coal, 2022, 47(3): 1370-1381.
|
|
LIU Q B, XIANG W, BUDHU M, et al. Quantification of particle shape in sand and soil and its effect on mechanical indexes[J]. Geotechnical Mechanics, 2011, 32(S1): 190-197.
|
[9] |
赵岩, 郑娇玉, 郭鹏, 等. ImageJ软件在泥石流固体颗粒分析中的应用[J]. 兰州大学学报(自然科学版), 2015, 51(6): 877-881.
|
|
WANG X K, ZHU Y T. Application of laser particle size distribution meter in clay particle analysis[J]. China Harbor Construction, 2022, 42(11): 38-41.
|
[14] |
孙惠凤, 曹成林, 宋玉鹏. 激光粒型分析法在砂质沉积物粒度分析中的应用[J]. 海洋地质与第四纪地质, 2015, 35(2): 185-192.
|
[16] |
周基, 田琼, 英红, 等. 乳化沥青颗粒粒度的图像分析方法[J]. 建筑材料学报, 2013, 16(1): 81-85.
|
|
ZHOU J, TIAN Q, YING H, et al. Image analysis method of emulsified asphalt particle size[J]. Journal of Construction Materials, 2013, 16(1): 81-85.
|
|
WEI M, LUO Q, JIANG L W, et al. Model experimental study on the effect of fill reinforcement on the seismic response of cantilever retaining walls[J]. Vibration and Shock, 2022, 41(19): 237-247.
|
|
WU P Q, MA X F, CONG Y. Centrifugal simulation experimental study on the stability of sandy soil slopes [J]. Roadbed Engineering, 2014, (5): 115-119.
|
[19] |
池寅, 时豫川, 吴海洋, 等. 砂质海床中船锚运动全过程数值模拟[J]. 武汉大学学报(工学版), 2017, 50(6): 807-814.
|
[20] |
曾召田, 刘兆强, 徐云山, 等. 岩溶地下水渗流-传热地埋管试验平台的研制及模型试验[J]. 可再生能源, 2022, 40(9): 1173-1180.
|
[21] |
王家全, 徐良杰, 李洋溢, 等. 动载频率对土工格栅加筋土挡墙动力特性的影响[J]. 振动工程学报, 2019, 32(5): 898-907.
|
|
WANG J Q, XU L J, LI Y Y, et al. Influence of dynamic loading frequency on dynamic characteristics of geogrid reinforced soil retaining walls [J]. Journal of Vibration Engineering, 2019, 32(5): 898-907.
|
[24] |
梁越, 曾超, 储昊, 等. 散粒土渗透破坏判别方法试验研究[J]. 人民长江, 2015, 46(18): 75-79.
|
[25] |
冯忠居, 张聪, 何静斌, 等. 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21(4): 72-83.
|
[26] |
徐光明, 任国峰, 顾行文, 等. 新型板桩码头群桩基础被动段桩侧压力试验研究[J]. 岩土工程学报, 2018, 40(3): 502-511.
|
[29] |
李剑, 潘鹏, 崔自治, 等. 冬灌区粉砂的反复冻融效应[J]. 科学技术与工程, 2017, 17(14): 268-272.
|
|
XU W Z, XU D, LIN Q L, et al. Determination of appearance and shape parameters of rice based on cell phone photography and ImageJ software[J]. Chinese Journal of Cereals and Oils, 2019, 34(10): 109-113.
|
|
FENG Y J, WANG J M, LIANG M, et al. Optimization of ImageJ-based method for quantitative determination of cigarette packet ash value[J]. Food and Machinery, 2018, 34(3): 216-219.
|
[7] |
张锦旺, 何庚, 王家臣. 不同混合度下液体介入难辨别煤矸红外图像识别准确率[J]. 煤炭学报, 2022, 47(3): 1370-1381.
|
[8] |
刘清秉, 项伟, Budhu M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(S1): 190-197.
|
|
ZHAO Y, ZHENG J Y, GUO P, et al. Application of ImageJ software in the analysis of solid particles in mudflow[J]. Journal of Lanzhou University (Natural Science Edition), 2015, 51(6): 877-881.
|
|
XU Z X, GUO S B. Pore structure analysis of shale reservoirs based on argon ion polishing-SEM and ImageJ software—An example of the Steasanto Formation in the Central Yangzi region[J]. Journal of Northeast Petroleum University, 2014, 38(4): 45-51.
|
[12] |
洪明海, 徐驰, 曾文治, 等. 盐渍土壤孔隙结构及分形特征研究[J]. 中国农村水利水电, 2017(7): 54-58.
|
[13] |
王雪奎, 朱耀庭. 激光粒度分布仪在黏土颗粒分析中的应用[J]. 中国港湾建设, 2022, 42(11): 38-41.
|
|
SUN H F, CAO C L, SONG Y P. Application of laser grain size analysis in particle size analysis of sandy sediments[J]. Marine Geology and Quaternary Geology, 2015, 35(2): 185-192.
|
|
WANG Y P, LI D W, WANG J P. Study on particle size characterization of alluvial deposits in Qiaojia section of Jinshajiang River by dynamic image method[J]. Geological Review, 2019, 65(2): 503-513.
|
[17] |
魏明, 罗强, 蒋良潍, 等. 填土加筋对悬臂式挡墙地震响应影响的模型试验研究[J]. 振动与冲击, 2022, 41(19): 237-247.
|
[18] |
午鹏奇, 马险峰, 丛郁. 砂土边坡稳定性离心模拟试验研究[J]. 路基工程, 2014, (5): 115-119.
|
|
CHI Y, SHI Y C, WU H Y, et al. Numerical simulation of the whole process of anchor movement in sandy seabed[J]. Journal of Wuhan University (Engineering Edition), 2017, 50(6): 807-814.
|
|
ZENG Z T, LIU Z Q, XU Y S, et al. Development and modeling of an underground pipe test platform for seepage-heat transfer in karst groundwater[J]. Renewable Energy, 2022, 40(9): 1173-1180.
|
[22] |
蒋红光, 边学成, 徐翔, 等. 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36(2): 354-362.
|
[23] |
张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959-1967.
|
[27] |
蔡念, 曹丽文, 商敬秋. 无机盐溶液渗流过程中化学作用对粉砂渗透性的影响[J]. 科学技术与工程, 2018, 18(16): 312-317.
|
[28] |
王士杰, 何满潮, 张吉占. 用归一化标准贯入N值估算砂土的相对密度[J]. 岩土工程学报, 2005, 27(6): 682-685.
|
|
MI H Z, HU Y N. Experimental study on engineering properties of lime soil in Lanzhou[J]. Building Science, 2009, 25(1): 55-58.
|
|
JIANG H G, BIAN X C, XU X, et al. Full-scale physical modeling of dynamic behavior of high-speed railroad slab-on-rail roadbed under moving train load[J]. Journal of Geotechnical Engineering, 2014, 36(2): 354-362.
|
|
ZHANG C C, SHI B, LIU S P, et al. Study on the coupling between drilled hole backfill and direct buried strain sensing fiber optic cable[J]. Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967.
|
|
LIANG Y, ZENG C, CHU H, et al. Experimental research on infiltration damage discrimination method of bulk soil [J]. Peoples Yangtze River, 2015, 46(18): 75-79.
|
|
FENG Z J, ZHANG C, HE J B, et al. Shaking table test on liquefaction resistance of group pile foundation under strong earthquake[J]. Journal of Transportation Engineering, 2021, 21(4): 72-83.
|
|
CAI N, CAO L W, SHANG J Q. Effect of chemical action on permeability of chalk sand during seepage of inorganic salt solution[J]. Science Technology and Engineering, 2018, 18(16): 312-317.
|
|
WANG S J, HE M C, ZHANG J Z. Estimation of relative density of sandy soils using normalized standard penetration N values[J]. Journal of Geotechnical Engineering, 2005, 27(6): 682-685.
|
|
LI J, PAN P, CUI Z Z, et al. Repeated freezing and thawing effects of chalk in winter irrigation areas[J]. Science Technology and Engineering, 2017, 17(14): 268-272.
|
|
ZHANG X J. Experimental study on soil-water characteristic curve of pulverized soil on the slope of Tal open pit coal mine[J]. Coal Engineering, 2019, 51(8): 135-139.
|
|
ZHOU F H, LUO S Y, SUN J C. Formation mechanism and comprehensive treatment countermeasures of K18 graben landslide of Nanning Ring Expressway[J]. Highway and Transportation Science and Technology, 2007, 24(7): 44-47.
|
|
GUO X L, LI S S. Experimental study on the compaction and permeability characteristics of shale weathering material in Shuibuya Water Conservancy Hub[J]. Peoples Yangtze River, 1996, 27(12): 19-21.
|
|
MA Q G, YI X D, LANG M T, et al. Geotechnical properties of Xinyang primary clay [J]. Journal of Xinyang Normal College (Natural Science Edition), 2022, 35(2): 310-317.
|
[37] |
郑爱荣, 朱洪满. 絮凝加速吹填土沉积的试验研究[J]. 岩土工程学报, 2017, 39(S2): 145-148.
|
|
XU G M, REN G F, GU X W, et al. Experimental study on lateral pressure of passive section piles for new type of sheet pile wharf group pile foundation[J]. Journal of Geotechnical Engineering, 2018, 40(3): 502-511.
|
[31] |
周正龙, 陈国兴, 黄春霞, 等. 基于累积耗损能量的饱和粉土液化特性试验研究[J]. 地震工程学报, 2015, 37(1): 1-5.
|
|
ZHOU Z L, CHEN G X, HUANG C X, et al. Experimental study on liquefaction characteristics of saturated chalk based on cumulative dissipation energy[J]. Journal of Earthquake Engineering, 2015, 37(1): 1-5.
|
[36] |
王生廷, 盛煜, 曹伟, 等. 基于地貌分类的黄河源区多年冻土层地下冰储量估算[J]. 水科学进展, 2017, 28(6): 801-810.
|
|
WANG S T, SHENG Y, CAO W, et al. Estimation of underground ice reserves in the perennial permafrost layer in the Yellow River source area based on geomorphologic classification[J]. Advances in Water Science, 2017, 28(6): 801-810.
|
|
ZHENG A R, ZHU H M. Experimental study on flocculation to accelerate the deposition of blow-fill soil[J]. Journal of Geotechnical Engineering, 2017, 39(S2): 145-148.
|
|
LÜ C, TANG C S, LI S J, et al. Research on particle grading analysis of sandy soil based on digital image processing technology [J]. Journal of College Geology, 2019, 25(3): 431-436.
|
[30] |
米海珍, 胡燕妮. 兰州石灰土工程性质的试验研究[J]. 建筑科学, 2009, 25(1): 55-58.
|
[35] |
马全国, 易先达, 郎梦婷, 等. 信阳原状黏土的岩土工程特性[J]. 信阳师范学院学报(自然科学版), 2022, 35(2): 310-317.
|
[34] |
郭熙灵, 李思慎. 水布垭水利枢纽页岩风化料击实和渗透特性试验研究[J]. 人民长江, 1996,27(12): 19-21.
|
[39] |
贾俊平, 何晓群, 金勇进. 统计学 [M]. 第7版. 北京: 中国人民大学出版社, 2018.
|
[38] |
吕超, 唐朝生, 李胜杰, 等. 基于数字图像处理技术的砂土颗粒级配分析研究[J]. 高校地质学报, 2019, 25(3): 431-436.
|
|
|
|