|
|
Attack Detection of Microgrid Based on ARO-MKELM |
WU Zhongqiang,ZHANG Weiyi |
Hebei Key Laboratory of Industrial Computer Control Engineering, Yanshan University, Qinhuangdao, Hebei 066004,China |
|
|
Abstract The complexity and openness of smart grids make them more vulnerable to the threat of cyber attacks when exchanging information. Most of the current detection methods only focus on detecting the existence of the attack and cannot determine the specific location of the attacked distributed power supply, which results in the inability to quickly isolate the attacked distributed power supply and subsequently cause serious damage. To propose a false data injection attack detection method for AC microgrids based on the artificial rabbit swarm optimization algorithm optimizing a multi-core limit learning machine. A combined kernel function is introduced into the traditional extreme learning machine to improve the learning ability and generalization ability of the detection model, and the artificial rabbit pack optimization algorithm with strong global search ability is used to optimize the kernel function parameters and regularization coefficients of the multi-core extreme learning machine to further improve the detection accuracy of the detection model. Simulation verification is carried out using step attack signals with amplitudes of 55 and 95 within the non-training samples, and the detection accuracy ranges from (93.44~94.64)% and (98.11~99.23)%, respectively, and comparative analyses are carried out with other detection models to verify the superiority of the proposed method.
|
Received: 29 October 2023
Published: 30 September 2024
|
|
|
|
|
[17] |
蒋正威, 张超, 孙伟乐, 等. 基于神经网络的电网假数据注入攻击检测方法研究[J]. 浙江电力, 2020, 39(11): 45-50.
|
[11] |
张露元, 许寅, 吴翔宇, 等. 抵御虚假数据注入攻击的交流微电网分布式韧性控制[J]. 电力系统自动化, 2023, 47(8): 44-52.
|
[7] |
罗小元, 潘雪扬, 王新宇, 等. 基于自适应 Kalman滤波的智能电网假数据注入攻击检测[J]. 自动化学报, 2022, 48(12): 2960-2971.
|
[2] |
吴忠强, 戚松岐, 尚梦瑶, 等. 基于优化回声状态网络的微电网等效建模[J]. 计量学报, 2021, 42 (7): 923-929.
|
[3] |
吴忠强, 卢雪琴. 基于深度迁移学习和LSTM网络的微电网故障诊断[J]. 计量学报, 2023, 44(4): 582-590.
|
[5] |
田继伟, 王布宏, 李腾耀, 等. 智能电网虚假数据注入攻击研究进展与展望[J]. 网络空间安全, 2019, 10(9): 73-84.
|
[9] |
安宇, 刘东, 陈飞, 等. 考虑信息攻击的配电网信息物理运行风险分析[J]. 电网技术, 2019, 43(7): 2345-2352.
|
|
WU Z Q, QI S Q, SHANG M Y, et al. Equivalent modeling of micro-grid using optimized ESN [J]. Acta Metrologica Sinica, 2021, 42 (7): 923-929.
|
|
WU Z Q, LU X Q. Microgrid fault diagnosis based on deep migration learning and LSTM networks[J]. Acta Metrologica Sinica, 2023, 44 (4): 582-590.
|
[8] |
郑瑶, 张颉, 姚文轩, 等. 基于空间特征的电网同步量测虚假数据注入攻击检测[J]. 电力系统自动化, 2023, 47(10): 128-134.
|
[10] |
何西, 涂春鸣, 于力. 配电网状态估计量测处理方法及抗虚假数据注入攻击策略[J]. 高电压技术, 2021, 47(7): 2342-2349.
|
[1] |
SHRIVASTAVA S, SUBUDHI B. Distributed finite-time information discovery-based secondary restoration for islanded microgrids[J]. IET Smart Grid, 2020, 3(3): 300-308.
|
[4] |
陈刚, 李志勇, 韦梦立. 孤岛微电网的分布式固定时间二次协调控制[J]. 控制与决策, 2019, 34(1): 205-212.
|
|
CHEN G, LI Z Y, WEI M L. Distributed fixed-time secondary coordination control of islanded microgrids[J]. Control and Decision, 2019, 34(1): 205-212.
|
|
TIAN J W, WANG B H, LI T Y, et al. Research progress and prospects of smart grid false data injection attacks[J]. Cyberspace Security, 2019, 10(9): 73-84.
|
|
AN Y, LIU D, CHEN F, et al. Risk analysis of cyber physical distribution network operation considering cyber attack [J]. Power System Technology, 2019, 43(7): 2345-2352.
|
|
HE X, TU C M, YU L. Distribution network state estimation measurement processing method and anti-false data injection attack strategy[J]. High Voltage Engineering, 2021, 47(7): 2342-2349.
|
[12] |
SUPRABHATH K, PRASAD M V S, CHETTY S M, et al. A deep learning based cyber attack detection scheme in DC microgrid systems[J]. CPSS Transactions on Power Electronics and Applications, 2023, 8(2): 119-127.
|
[16] |
郭方洪, 郑祥康, 邓超, 等. 直流微电网无界虚假数据注入网络攻击检测与系统恢复方法[J]. 电力系统自动化, 2023, 47(2): 146-153.
|
[6] |
LU K D, WU Z G. Multi-objective false data injection attacks of cyber-physical power systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(9): 3924-3928.
|
|
LUO X Y, PAN X Y, WANG X Y, et al. Dection of false data injection attack in smart grid via adaptive Kalman filtering[J]. Acta Automatica Sinica, 2022, 48(12): 2960-2971.
|
|
ZHENG Y, ZHANG J, YAO W X, et al. Spatial feature based detection of false data injection attacks for synchronized grid measurement[J]. Automation of Electric Systems, 2023, 47(10): 128-134.
|
|
ZHANG L Y, XUY, WU X Y, et al. Distributed resilience control for AC microgrids against false data injection attacks[J]. Automation of Electric Systems, 2023, 47(8): 44-52.
|
[13] |
WANG T, LIANG L, GURUMUETHY S K, et al. Model-based fault detection and isolation in dc microgrids using optimal observers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 9(5): 5613-5630.
|
[15] |
陈郁林, 齐冬莲, 李真鸣, 等. 虚假数据注入攻击下的微电网分布式协同控制[J]. 电力系统自动化, 2021, 45(5): 97-103.
|
|
JIANG Z W, ZHANG C, SUN W L, et al. Research on neural network based detection method of false data injection attack on power grids[J]. Zhe Jiang Electric Power, 2020, 39(11): 45-50.
|
[18] |
HHUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 42(2): 513-529.
|
[14] |
ABAZARI A, ZADSAR M, GHAFOURI M, et al. A data mining/ANFIS and adaptive control for detection and mitigation of attacks on DC MGs[J]. IEEE Transactions on Smart Grid, 2022, 14(3): 2406-2422.
|
|
CHEN Y L, QI D L, LI Z M, et al. Distributed cooperative control of microgrids under false data injection attacks[J]. Automation of Electric Systems, 2021, 45(5): 97-103.
|
|
GUO F H, ZHENG X K, DENG C, et al. Boundaryless false data injection network attack detection and system recovery method for DC microgrids[J]. Automation of Electric Systems, 2023, 47(2): 146-153.
|
[19] |
WANG L, CAO Q, ZHANG Z, et al. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105082.
|
|
|
|