|
|
The Methods and Prospects of Temperature Measurement for Chip Development in Micro-nano Meter Scale |
WU Feixiang1,2,XING Li2,FENG Xiaojuan2,ZHANG Jintao2,SUN Jian1 |
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Thermophysics, National Institute of Metrology, Beijing 100029, China |
|
|
Abstract The current temperature measurement technology is unable to meet the increasing performance demands of chips. Traditional contact temperature measurement methods such as thermocouple have high precision, but slow response rate, it is difficult to achieve wide field thermal imaging. Non-contact methods such as infrared radiation can achieve rapid thermal field measurement, but the accuracy is low and the wavelength is limited. The traditional temperature measurement methods are inadequate for achieving high precision, rapid temperature measurement at micro-nano scales. With the development of quantum precision temperature measurement technology, diamond negatively charged nitrogen-vacancy(NV-) center temperature measurement technology based on solid quantum spin effect is expected to solve the above problems, breaking through the existing micro-nano scale temperature measurement in the development of chip application bottleneck. In view of this, we first review the characteristics and development status of the existing chip temperature measurement technology, and then analyze the characteristics of diamond NV-center temperature measurement, miniaturization and integration technology trends. Finally, the technical advantages and application prospects in the field of chip development are prospected, and the challenges facing its development are put forward.
|
Received: 23 April 2024
Published: 26 September 2024
|
|
|
|
|
[41] |
FERGASON J L. Liquid Crystals in Nondestructive Testing[J]. Applied Optics, 1968, 7(9): 1729.
|
[1] |
WIELAND R, BONFERT D, KLUMPP A, et al. 3D Integration of CMOS transistors with ICV-SLID technology[J]. Microelectronic Engineering, 2005, 82(3): 529-533.
|
[3] |
PLAKHOTNIK T, DOHERTY M W, COLE J H, et al. All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV- Center in Nanodiamond[J]. Nano Letters, 2014, 14(9): 4989-4996.
|
[28] |
WILLIAMS C C. High resolution photothermal laser probe[J]. Appl Phys Lett, 1984, 44(12):1115-1117.
|
[2] |
SHAKOURI A, ZHANG Y. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69.
|
[4] |
CLEVENSON H, TRUSHEIM M E, TEALE C, et al. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide[J]. Nature Physics, 2015, 11(5): 393-397.
|
[5] |
MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.
|
[7] |
DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 2011, 7(6): 459-463.
|
[8] |
HARRIS L, JOHNSON E A. The Technique of Sputtering Sensitive Thermocouples[J]. Review of Scientific Instruments, 1934, 5(4): 153-158.
|
[10] |
LIU H, SUN W, CHEN Q, et al. Thin-Film Thermocouple Array for Time-Resolved Local Temperature Mapping[J]. IEEE Electron Device Letters, 2011, 32(11): 1606-1608.
|
[12] |
MAJUMDAR A, LAI J, CHANDRACHOOD M, et al. Thermal imaging by atomic force microscopy using thermocouple cantilever probes[J]. Review of Scientific Instruments, 1995, 66(6): 3584-3592.
|
[13] |
SADAT S, TAN A, CHUA Y J, et al. Nanoscale Thermometry Using Point Contact Thermocouples[J]. Nano Letters, 2010, 10(7): 2613-2617.
|
[14] |
KIM K, JEONG W, LEE W, et al. Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry[J]. ACS Nano, 2012, 6(5): 4248-4257.
|
[16] |
SHIH F, TSOU C, FANG W. A Monolithic Micromachined Thermocouple Probe With Electroplating Nickel for Micro-LED Inspection[J]. Journal of Microelectromechanical Systems, 2021, 30(6): 864-875.
|
[18] |
BOURG M E, VAN DER VEER W E, GRüELL A G, et al. Electrodeposited Submicron Thermocouples with Microsecond Response Times[J]. Nano Letters, 2007, 7(10): 3208-3213.
|
[20] |
DONG-HO LEE. Thermal analysis of integrated-circuit chips using thermographic imaging techniques[J]. IEEE Transactions on Instrumentation and Measurement, 1994, 43(6): 824-829.
|
[22] |
SCHMIDT C, ALTMANN F, BREITENSTEIN O. Application of lock-in thermography for failure analysis in integrated circuits using quantitative phase shift analysis[J]. Materials Science and Engineering: B, 2012, 177(15): 1261-1267.
|
[23] |
SADIQBATCHA S, ZHAO H, AMROUCH H, et al. Hot Spot Identification and System Parameterized Thermal Modeling for Multi-Core Processors Through Infrared Thermal Imaging[C]//2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). Florence, Italy, 2019.
|
[61] |
KIM M M, GIRY A, MASTIANI M, et al. Microscale thermometry: A review[J]. Microelectronic Engineering, 2015, 148: 129-142.
|
[6] |
ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond[J]. Physical Review Letters, 2010, 104(7): 070801.
|
[9] |
PARK J J, TAYA M. Design of Micro-Temperature Sensor Array With Thin Film Thermocouples[J]. Journal of Electronic Packaging, 2005, 127(3): 286-289.
|
[15] |
CHEN Q, HU R, HU J, et al. Experimental study of measuring LEDs temperatures via thermocouple[C]//2016 17th International Conference on Electronic Packaging Technology (ICEPT). 2016.
|
[21] |
BREITENSTEIN O, LANGENKAMP M, ALTMANN F, et al. Microscopic lock-in thermography investigation of leakage sites in integrated circuits[J]. Review of Scientific Instruments, 2000, 71(11): 4155-4160.
|
[25] |
USAMENTIAGA R, GARCIA D F, IBARRA-CASTANEDO C, et al. Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets[J]. Measurement, 2017, 112: 105-116.
|
[31] |
TESSIER G, POLIGNANO M L, PAVAGEAU S, et al. Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations[J]. Journal of Physics D: Applied Physics, 2006, 39(19): 4159-4166.
|
[35] |
翟玉卫, 梁法国, 郑世棋, 等. 用热反射测温技术测量GaNHEMT的瞬态温度[J]. 半导体技术, 2016,41(1): 76-80.
|
[40] |
BURZO M G, KOMAROV P L, RAAD P E. Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(4): 637-643.
|
[44] |
LAU C K, SIM K S, TSO C P. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools: Localization of burn mark using failure analysis tools[J]. Scanning, 2011, 33(1): 13-20.
|
[46] |
MOLLER S, KNIG J, RESAGK C, et al. Influence of the illumination spectrum and observation angle on temperature measurements using thermochromic liquid crystals[J]. Measurement Science and Technology, 2019, 30(8): 084006.
|
[49] |
GU P, ZHANG Y, FENG Y, et al. Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots[J]. Nanoscale, 2013, 5(21): 10481.
|
[50] |
舒伟程, 胡润, 谢斌, 等. 基于量子点测量LED芯片表面温度的实验研究[J]. 工程热物理学报, 2018, 39(2): 442-445.
|
[53] |
姜海峰, 陈国彬, 郭志刚, 等. 基于NV色心的晶体管放大器近场分布成像[J]. 电子学报, 2020, 48(8): 1631-1634.
|
[11] |
ASSUMPCAO D, KUMAR S, NARASIMHAN V, et al. High-performance flexible metal-on-silicon thermocouple[J]. Scientific Reports, 2018, 8(1): 13725.
|
[17] |
ZHANG X, CHOI H, DATTA A, et al. Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 900-905.
|
[24] |
RONGIER C, GILBLAS R, LE MAOULT Y, et al. Infrared thermography applied to the validation of thermal simulation of high luminance LED used in automotive front lighting[J]. Infrared Physics & Technology, 2022, 120: 103980.
|
[26] |
VELLVEHí M, PERPI X, LAURO G, et al. Irradiance-based emissivity correction in infrared thermography for electronic applications[J]. The Review of scientific instruments, 2011, 82: 114901.
|
[27] |
MATATAGUI E, THOMPSON A G, CARDONA M. Thermoreflectance in Semiconductors[J]. Physical Review, 1968, 176(3): 950-960.
|
[30] |
CHRISTOFFERSON J, SHAKOURI A. Thermoreflectance based thermal microscope[J]. Review of Scientific Instruments, 2005, 76(2): 024903.
|
[32] |
GRAUBY S, SALHI A, RAMPNOUX J M, et al. Laser scanning thermoreflectance imaging system using galvanometric mirrors for temperature measurements of microelectronic devices[J]. Review of Scientific Instruments, 2007, 78(7): 074902.
|
[34] |
KIM D U, PARK K S, JEONG C B, et al. Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy[J]. Optics Express, 2016, 24(13): 13906.
|
|
ZHAI Y W, LIANG F G, ZHENG S Q, et al. Transient Temperature Measurement of GaN HEMT Using Thermoreflectance Technique[J]. Semiconductor Technology,2016, 41(1): 76-80.
|
[36] |
METAYREK Y, KOCINIEWSKI T, KHATIR Z. Thermal mapping at the cell level of chips in power modules through the silicone gel using thermoreflectance[J]. Microelectronics Reliability, 2020, 105: 113563.
|
[39] |
FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films[J]. Review of Scientific Instruments, 2015, 86(2): 024903.
|
[43] |
LEE C C, PARK J. Temperature Measurement of Visible Light-Emitting Diodes Using Nematic Liquid Crystal Thermography With Laser Illumination[J]. IEEE Photonics Technology Letters, 2004, 16(7): 1706-1708.
|
[74] |
邢力, 冯晓娟, 张金涛. 金刚石氮-空位色心连续式温度测量灵敏度分析[J]. 计量学报, 2023, 44(5): 707-713.
|
[19] |
PAVLASEK P, ELLIOTT C J, PEARCE J V, et al. Hysteresis Effects and Strain-Induced Homogeneity Effects in Base Metal Thermocouples[J]. International Journal of Thermophysics, 2015, 36(2): 467-481.
|
[29] |
THORNE S A, IPPOLITO S B, NL M S, et al. High-resolution thermoreflectance microscopy[J]. MRS Proceedings, 2002, 738: 129.
|
[38] |
TESSIER G, BARDOUX M, BOUé C, et al. Back side thermal imaging of integrated circuits at high spatial resolution[J]. Applied Physics Letters, 2007, 90(17): 171112.
|
[48] |
LI S, ZHANG K, YANG J M, et al. Single Quantum Dots as Local Temperature Markers[J]. Nano Letters, 2007, 7(10): 3102-3105.
|
[52] |
CHOE S, YOON J, LEE M, et al. Precise temperature sensing with nanoscale thermal sensors based on diamond NV centers[J]. Current Applied Physics, 2018, 18(9): 1066-1070.
|
[54] |
FOY C, ZHANG L, TRUSHEIM M E, et al. Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26525-26533.
|
[56] |
LIU C F, LEONG W H, XIA K, et al. Ultra-sensitive hybrid diamond nanothermometer[J]. National Science Review, 2021, 8(5): nwaa194.
|
[58] |
MASHKOV P, PENCHEVA T, GYOCH B. LEDs thermal management aided by infrared thermography[C]//2010 International Symposium on Advanced Packaging Materials: Microtech (APM). 2010.
|
[62] |
WEBB J L, CLEMENT J D, TROISE L, et al. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer[J]. Applied Physics Letters, 2019, 114:231103.
|
[64] |
XIE F, LIU Q, HU Y, et al. A Microfabricated Diamond Quantum Magnetometer with Picotesla Scale Sensitivity[C]//2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). Munich, Germany, 2023.
|
[66] |
WANG X, ZHENG D, WANG X, et al. Portable Diamond NV Magnetometer Head Integrated With 520 nm Diode Laser[J]. IEEE Sensors Journal, 2022, 22(6): 5580-5587.
|
[68] |
POGORZELSKI J, HORSTHEMKE L, HOMRIGHAUSEN J, et al. Compact and Fully Integrated LED Quantum Sensor Based on NV Centers in Diamond[J]. Sensors, 2024, 24(3): 743.
|
[71] |
DEGUCHI H, HAYASHI T, SAITO H, et al. Compact and portable quantum sensor module using diamond NV centers[J]. Applied Physics Express, 2023, 16(6): 062004.
|
[72] |
WANG Z, ZHANG J, FENG X, et al. Microwave Heating Effect on Diamond Samples of Nitrogen-Vacancy Centers[J]. ACS Omega, 2022, 7(35): 31538-31543.
|
[33] |
CHOI W J, RYU S Y, KIM J K, et al. High-speed thermoreflectance microscopy using charge-coupled device-based Fourier-domain filtering[J]. Optics Letters, 2013, 38(18): 3581.
|
[75] |
DUAN D, KAVATAMANE V K, ARUMUGAM S R, et al. Laser-induced heating in a high-density ensemble of nitrogen-vacancy centers in diamond and its effects on quantum sensing[J]. Optics Letters, 2019, 44(11): 2851-2854.
|
[37] |
JINDAL G, POMEROY J W, WATKINS G T, et al. High-Speed Electro-Thermal Measurements in RF Power Amplifiers Using Thermo-Reflectance[C]//2022 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMiC). Cardiff, United Kingdom, 2022.
|
[42] |
ASZDI G, SZABON J, JNOSSY I, et al. High resolution thermal mapping of microcircuits using nematic liquid crystals[J]. Solid-State Electronics, 1981, 24(12): 1127-1133.
|
[45] |
CSENDES A, SZKELY V, RENCZ M. Thermal mapping with liquid crystal method[J]. Microelectronic Engineering, 1996, 31(1-4): 281-290.
|
[47] |
WALKER G W, SUNDAR V C, RUDZINSKI C M, et al. Quantum-dot optical temperature probes[J]. Applied Physics Letters, 2003, 83(17): 3555-3557.
|
|
SHU W C, HU R, XIE B, et al. Experimental Study on LED Chip Surface Temperature Via the Quantum Dot[J]. Journal of Engineering Thermophysics, 2018, 39(2): 442-445.
|
[51] |
ANDRICH P, LI J, LIU X, et al. Microscale-Resolution Thermal Mapping Using a Flexible Platform of Patterned Quantum Sensors[J]. Nano Letters, 2018, 18(8): 4684-4690.
|
|
JIANG H F, CHEN G B, GUO Z G, et al. Near Field Distribution Imaging of Transistor Amplifier Based on NV Color Center[J]. Acta Electronica Sinica, 2020, 48(8): 1631-1634.
|
[55] |
ZHANG S C, DONG Y, DU B, et al. A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers[J]. Review of Scientific Instruments, 2021, 92(4): 044904.
|
[59] |
BAHK J H, SHAKOURI A. Ultra-fast Thermoreflectance Imaging for Electronic, Optoelectronic, and Thermal Devices[C]//2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS). 2019.
|
[63] |
STRNER F M, BRENNEIS A, BUCK T, et al. Integrated and Portable Magnetometer Based on Nitrogen-Vacancy Ensembles in Diamond[J]. Advanced Quantum Technologies, 2021, 4(4): 2000111.
|
[69] |
IBRAHIM M I, FOY C, ENGLUND D R, et al. High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers[J]. IEEE Journal of Solid-State Circuits, 2021, 56(3): 1001-1014.
|
[73] |
OUYANG K, WANG Z, XING L, et al. Temperature dependence of the zero-field splitting parameter of nitrogen-vacancy centre ensembles in diamond considering microwave and laser heating effect[J]. Measurement Science and Technology, 2022, 34(1): 015102.
|
[57] |
GONG M, XU J, YU M, et al. Hybrid diamond quantum sensor with submicrokelvin resolution under ambient conditions[J]. Physical Review Applied, 2024, 21(2): 024053.
|
[60] |
CENGIZ C, AZARIFAR M, ARIK M. A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes[J]. Micromachines, 2022, 13(10): 1615.
|
[65] |
STRNER F M, BRENNEIS A, KASSEL J, et al. Compact integrated magnetometer based on nitrogen-vacancy centres in diamond[J]. Diamond and Related Materials, 2019, 93: 59-65.
|
[70] |
RAN G, ZHANG Z, HUANG K, et al. A Highly Integrated, High-Sensitivity Magnetometer Based on Diamond Nitrogen-Vacancy Centers[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 3223-3227.
|
|
XING L, FENG X J, ZHANG J T, Analysis of Continuous Temperature Measurement Sensitivity Based on Nitrogen-vacancy Centers in Diamond[J]. Acta Metrologica Sinica, 2023, 44(5): 707-713.
|
[67] |
ZHANG Z, XU R, ZHANG Y, et al. Design of NV Centers Integrated Magnetometer and High-Resolution Output Module Based on the ODMR System[J]. IEEE Sensors Journal, 2023, 23(6): 6150-6155.
|
|
|
|