|
|
Research on Federated Learning of Numerical Control Machine Fault Diagnosis Based on Edge Cloud Cooperation |
XU Lingyan1,LU Yi1,ZHAO Jing2 |
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Hangzhou Wolei Intelligent Technology Co. Ltd, Hangzhou, Zhejiang 310018, China |
|
|
Abstract In order to solve the problem when the spindle bearing and cutter fault diagnosis model of NC machine tool is trained, it needs massive data and takes a long time. A federated mean learning fault diagnosis model based on edge-cloud collaborative architecture is proposed. Firstly, one-dimensional convolutional neural network model architecture is designed, and local model training is carried out on each edge client to reduce data upload scale and share computing pressure on cloud server side. Then, the model aggregation algorithm is optimized based on the accuracy on the cloud server side, and the edge client screening algorithm is improved to accelerate the convergence rate and improve the accuracy of the model. Thirdly, the KubeEdge cloud collaborative platform based on Kubernetes is built on the cloud server side to shorten the communication time of data transmission. Finally, the experimental results show that the accuracy of fault diagnosis in each edge client of the model is stable at about 87.5%. Compared with the control group, the convergence speed and training time are optimized.
|
Received: 13 December 2022
Published: 06 June 2024
|
|
Fund:Science and Technology Program of State Administration for Market Regulation;Zhejiang Provincial key research and development Program of Science and Technology Project |
|
|
|
[3] |
戴稳, 张超勇, 孟磊磊, 等. 采用深度学习的铣刀磨损状态预测模型 [J]. 中国机械工程, 2020, 31(17): 2071-2078.
|
[10] |
曹绍华, 陈辉, 陈舒, 等. AccFed: 物联网中基于模型分割的联邦学习加速 [J]. 电子与信息学报, 2023, 45(5): 1678-1687.
|
[6] |
唐波, 陈慎慎, 郭必奔, 等. 基于特征参数迁移的滚动轴承故障诊断 [J]. 计量学报, 2022, 43(3): 386-391.
|
[7] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术 [J]. 软件学报, 2022, 33(3): 1057-1092.
|
[12] |
FENG S W, YU H. Multi-participant multi-class vertical federated learning [J]. arXiv preprint, 2020: 2001. 11154.
|
|
GAO S K, BI G. Full information monitoring system of CNC machine tool suitable for intelligent manufacturing [J]. Journal of Xiamen University (Natural Science Edition), 2022, 61(6): 1090-1096.
|
[2] |
ZHANG W, LI C H, PENG G L, et al. A deep convolution neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
|
|
DAI W, ZHANG C Y, MENG L L, et al. Prediction model of milling cutter wear status based on deep learning [J]. China Mechanical Engineering, 2020, 31(17): 2071-2078.
|
[4] |
张子军. 基于工业互联网的数控机床智能故障诊断研究 [D]. 长沙: 湖南师范大学, 2021.
|
|
TANG B, CHEN S S, GUO B B, et al. Fault diagnosis of rolling bearings based on migration of characteristic parameters [J]. Acta Metrologica Sinica, 2022, 43(3): 386-391.
|
[8] |
ZHANG P Y, WANG C, JIANG C X, et al. Deep reinforcement learning assisted federated learing algorithm for data management of IIoT [J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8475-8484.
|
[9] |
GAO Y S, KIM M, ABUADBBA S, et al. End-to-end evalution of federated learing and split learing for internet of things [C]//Proceedings of 2020 International Symposium on Reliable Distributed Systems (SRDS).Shanghai, China, 2020: 91-100.
|
[11] |
王健宗, 孔令炜, 黄章成, 等. 联邦学习算法综述 [J]. 大数据, 2020, 6(6): 64-82.
|
[14] |
张依琳, 陈宇翔, 田晖, 等. 联邦学习在边缘计算场景中应用研究进展 [J]. 小型微型计算机系统, 2021, 42(12): 2645-2653.
|
[15] |
张煜莹, 陆艺, 赵静. 基于增量学习的数控机床故障诊断系统 [J]. 计量学报, 2022, 43(11): 1456-1463.
|
[17] |
陈维兴, 崔朝臣, 李小菁, 等. 基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断 [J]. 计量学报, 2021, 42(5): 615-622.
|
[17] |
程淑红, 芦嘉鑫,张典范, 等. 基于环形特征的卷积神经网络轮毂识别[J]. 计量学报, 2022, 43(6): 729-735.
|
[16] |
谢胜龙, 张为民, 鲁玉军, 等. 基于一维卷积神经网络的房颤智能诊断方法研究 [J]. 计量学报, 2020, 41(5): 620-626.
|
[18] |
鄢小安, 贾民平. 基于改进奇异谱分解的形态学解调方法及其在滚动轴承故障诊断中的应用 [J]. 机械工程学报, 2017, 53(7): 104-112.
|
[19] |
宋宇波, 朱靖恺, 赵灵奇, 等. 基于模型准确率的链上去中心化联邦学习模型 [J]. 清华大学学报(自然科学版), 2022, 62(5): 832-841.
|
[1] |
高舒凯, 毕果. 适用于智能制造的数控机床全信息监控系统 [J]. 厦门大学学报(自然科学版), 2022, 61(6): 1090-1096.
|
|
LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057-1092.
|
|
ZHANG Y L, CHEN Y X, TIAN H, et al. Survey on federated learning application on scenarios of edge computing [J]. Journal of Chinese Computer Systems, 2021, 42(12): 2645-2653.
|
|
YAN X A, JIA M P. Morphological demodulation method based on improved singular spectrum decomposition and its application in rolling bearing fault diagnosis [J]. Journal of Mechanical Engineering, 2017, 53(7): 104-112.
|
[5] |
汤华松. 基于边缘计算的电机轴承故障诊断方法研究 [D]. 合肥: 安徽大学, 2021.
|
|
WANG J Z, KONG L W, HUANG Z C, et al. Research review of federated learning algorithms [J]. Big Data Research, 2020, 6(6): 64-82.
|
|
CHEN W X, CUI C C, LI X J, et al. Bearing Fault Diagnosis of Wind Turbine Based on Multi-wavelet-1D Convolutional LSTM [J]. Acta Metrologica Sinica, 2021, 42(5): 615-622.
|
|
CAO S H, CHEN H, CHEN S, et al. AccFed: federated learning acceleration based on model partitioning in internet of things [J]. Journal of Electronics & Information Technology, 2023, 45(5): 1678-1687.
|
[13] |
KONECˇNY' J, H MCMAHAN B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence [J]. arXiv preprint, 2016: 1610. 02527.
|
|
XIE S L, ZHANG W M, LU Y J, et al. Research on intelligent diagnosis of atrial fibrillation based on one-dimensional convolution neural network [J]. Acta Metrologica Sinica, 2020, 41(5): 620-626.
|
|
CHENG S H, LU J X, ZHANG D F, et al. Wheel Hub Identification of Convolutional Neural Networks Based on Ring Features[J]. Acta Metrologica Sinica, 2022, 43(6): 729-735.
|
|
ZHANG Y Y, LU Y, ZHAO J. Fault diagnosis system of numerical control machine based on incremental learning [J]. Acta Metrologica Sinica, 2022, 43(11): 1456-1463.
|
|
SONG Y B, ZHU J K, ZHAO L Q, et al. Centralized federated learning model based on model accuracy [J]. J Tsinghua Univ (SCI & Technol), 2022, 62(5): 832-841.
|
|
|
|