|
|
Experimental Study on Measurement Accuracy of Nulling and Non-nulling S-type Pitot Tubes |
ZHANG Leyao1,2,3,ZHANG Liang2,3,GUO Suna1,GUO Hulin3,LU Guixiang3,KONG Lingcai1,2,3 |
1.College of Quality and Technical Supervision,Hebei University,Baoding,Hebei 071002,China
2. National Institute of Metrology,Beijing 100029,China
3. Zhengzhou Institute of Advanced Metrology Technology,Zhengzhou,Henan 450001,China |
|
|
Abstract The accuracy of the nulling and non-nulling of the S-type pitot tube is quite different under different working conditions. The influence of wind velocity,velocity angle of attack and structural parameters on the accuracy of nulling and non-nulling of the S-type pitot tube is studied through the wind tunnel. The results show that when the wind velocity changes from 5 to 30m/s, the maximum difference in the measurement accuracy of pitot tube is more than 10% in nulling and non-nulling at different velocity angles of attack. The pressure change of the static pressure hole in nulling and non-nulling is the main reason for the measurement error of the pitot tube at large velocity angles of attack. The pitot tube with smaller outer diameter, larger distance between total and static pressure hole, bending angle of measuring end between 15° and 30°, and smaller inner diameter of pressure tapping has higher measurement accuracy in both nulling and non-nulling.When the pitch angle is positive,the measurement accuracy of nulling is better than that of non-nulling. When the pitch angle and yaw angle are both 45°, the difference of measurement accuracy reaches the maximum, which is greater than 70%.
|
Received: 12 December 2022
Published: 06 June 2024
|
|
|
|
|
[15] |
邓千封, 张亮, 方立德, 等. 烟道流量计量标准装置 [J]. 计量学报, 2020, 41(5): 567-572.
|
[1] |
王正阳. 燃煤电厂的二氧化碳排放计算与影响分析[J]. 节能与环保, 2022(5): 39-40.
|
[3] |
马路遥, 马若梦, 祝晓轶, 等. 基于Herriott吸收池的固定源二氧化碳浓度测量[J]. 计量学报, 2022, 43(3): 416-419.
|
[4] |
梁天琪, 徐鸿, 郑天林, 等. 热电厂连续监测系统CEMS烟气污染物测量不确定度研究 [J]. 计量学报, 2021, 42(5): 668-674.
|
[5] |
胡永飞, 冯田丰, 姚艳霞, 等. 连续排放监测法在我国发电行业碳交易应用前景探讨 [J]. 电力科技与环保, 2019, 35(3): 50-52.
|
|
WANG Z Y. Calculation and impact analysis of carbon dioxide emission from coal-fired power plants [J]. Energy Conservation & Environmental Protection, 2022(5): 39-40.
|
[2] |
蒋忠, 张亮, 王海峰, 等. 企业核算碳排放量不确定度评估 [J]. 计量学报, 2022, 43(3): 420-426.
|
[7] |
方昱雯, 张亮, 赵不贿, 等. 6种典型流场中超声流量计校准系数随企业污染源烟气排放量变化研究 [J]. 计量学报, 2022, 43(6): 754-760.
|
|
LIANG T Q, XU H, ZHENG T L, et al. Measurement uncertainty in flue gas pollutants from thermal power plant by continuous emission monitoring system [J]. Acta Metrologica Sinica, 2021, 42(5): 668-674.
|
|
HU Y F, FENG T F, YAO Y X, et al. Discussion on application prospect of power generation industry carbon market using CEMS method [J]. Electric Power Technology and Environmental Protection, 2019, 35(3): 50-52.
|
|
LI H Y, ZHANG L, LIU X, et al. Research on on-line monitoring technology of flue gas flow in fixed emission source [J]. Shanghai Metrology and Testing, 2018, 45(5): 11-16.
|
[8] |
邓千封. 基于皮托管的烟道气体流量测量及量值溯源技术研究 [D]. 保定: 河北大学, 2020.
|
[10] |
杨阳, 张亮, 张洪军, 等. 烟道截面面积校准装置模型研究及不确定度评定 [J]. 计量学报, 2020, 41(11): 1364-1369.
|
|
YANG Y, ZHANG L, ZHANG H J, et al. Study on the stack cross section area calibration facility and its uncertainty evaluation [J]. Acta Metrologica Sinica, 2020, 41(11): 1364-1369.
|
[11] |
李德林. 基于风洞试验下的皮托管几何结构的优化设计研究 [D]. 保定: 河北大学, 2018.
|
[13] |
NGUYEN D T, CHOI Y M, LEE S H, et al. The impact of geometric parameters of a S-type Pitot tube on the flow velocity measurements for greenhouse gas emission Monitoring [J]. Flow Measurement and Instrumentation, 2019, 67: 10-22.
|
|
DENG Q F, ZHANG L, FANG L D, et al. Stack flowrate standard facility [J]. Acta Metrologica Sinica, 2020, 41(5): 567-572.
|
|
MA L Y, MA R M, ZHU X Y, et al. Carbon dioxide concentration measurement of fixed source based on Herriott absorption cell [J]. Acta Metrologica Sinica, 2022, 43(3): 416-419.
|
[9] |
杨美昭, 张亮, 方立德, 等. 对向测量皮托管的国际比对 [J]. 计量学报, 2022, 43(8): 1050-1057.
|
[14] |
KANG W, TRANG N D, LEE S H, et al. Experimental and numerical investigations of the factors affecting the S-type Pitot tube Coefficients [J]. Flow Measurement and Instrumentation, 2015, 44: 11-18.
|
[16] |
杨俊, 翁国华, 岳坚, 等. 基于伺服电机控制的三维皮托管测速系统设计 [J]. 电子科技, 2015, 28(9): 152-155.
|
|
JIANG Z, ZHANG L, WANG H F, et al. Uncertainty assessment of industry plant accounting carbon emissions [J]. Acta Metrologica Sinica, 2022, 43(3): 420-426.
|
|
FANG Y W, ZHANG L, ZHAO B H, et al. Research on change of calibration coefficient of ultrasonic flowmeter with the amount of enterprise pollution source flue gas in six typical flow fields [J]. Acta Metrologica Sinica, 2022, 43(6): 754-760.
|
[6] |
李海洋, 张亮, 刘幸, 等. 固定排放源烟气流量在线监测技术[J]. 上海计量测试, 2018, 45(5), 11-16.
|
[12] |
固定污染源排气中颗粒物测定与气态污染物采样方法:GB/T16157—1996[S]. 1996.
|
|
YANG M Z, ZHANG L, FANG L D, et al. International comparison of pitot tube for nulling method [J]. Acta Metrologica Sinica, 2022, 43(8): 1050-1057.
|
|
YANG J, WENG G H, YUE J, et al. Design of the three-dimensional pitot speed measuring system based on servo motor [J]. Electronic Science and Technology, 2015, 28(9): 152-155.
|
|
|
|