|
|
Verification Method of Wall Oxygen Inhaler Based on Deep Learning |
HUANG Kang,SUN Bin,WU Yanjuan,QIU Kaijun,ZHAO Yuxiao |
1. College of Metrology and Measurement Engineering,China Jiang University,Hangzhou,Zhejiang 310018,China
2. Goldcard Smart Group Co. Ltd,Hangzhou,Zhejiang 310018,China
3. Zhejiang Testing & Inspection Institute for Mechanical and Electrical Products Quality Co. Ltd,Hangzhou,Zhejiang 310051, China |
|
|
Abstract Aiming at the problems of large influence of manual reading and low verification efficiency of wall oxygen inhaler, a verification method of wall oxygen inhaler based on deep learning is proposed. Images of the wall oxygen inhaler are taken by an industrial camera and fed into the improved residual block ResNet-18 network for automatic readings of the float flow meter. Residual block structure improvement strategies include: add a dropout network layer in the direct connection path; remove the 1×1 convolutional layer in the residual block; use the LeakyReLU activation function instead of the ReLU activation function. The dataset is divided into training set and test set according to the ratio of 51, and after 100 batches of training, the accuracy of the network model on the test set is 98.37%. The wall oxygen inhaler with qualified verification results of National Institute of Metrology is connected to the verification device for verification,and the maximum indication error of the float flowmeter is calculated to be±0.2L/min, the error is within the allowable range, and the verification results are the same. The results show that this method can replace manual reading and effectively improve the verification efficiency.
|
Received: 25 November 2022
Published: 23 May 2024
|
|
|
|
|
[2] |
JJG 913-2015浮标式氧气吸入器检定规程[S]. 2015.
|
[5] |
周璐, 何隽, 虞栋栋. 浮标式氧气吸入器自动检定系统开发[J]. 计量与测试技术, 2021, 48(12): 76-79.
|
[8] |
孙磊, 孙斌, 赵玉晓. 双通道医用输液泵自动校准系统开发[J]. 计量学报, 2019, 40(6): 1064-1070.
|
[10] |
于起峰, 卢荣胜, 刘晓利, 等. “机器视觉技术及应用”专题前言[J]. 激光与光电子学进展, 2022, 59(14): 4.
|
[18] |
张竟月, 孙斌, 谢玄达, 等. 基于激光和机器视觉的微量液体容量计量方法[J]. 计量学报, 2018, 39(4): 504-509.
|
[1] |
金鑫. 浮标式氧气吸入器使用状况及存在问题[J]. 中国标准化, 2018(2): 207-209.
|
[4] |
毛敏, 陆金霞, 洪程鑫, 等. 基于机器视觉的全自动氧气吸入器检定器研究[J]. 无线互联科技, 2020, 17(11): 122-123.
|
[9] |
温凯, 韩旭, 李灿, 等. 基于神经网络的天然气流量计检定工艺智能控制系统[J]. 天然气工业, 2021, 41(7): 124-133.
|
|
MAO M, LU J X, HONG C X, et al. Research on automatic oxygen inhaler detector based on machine vision[J]. Wireless Internet Technology, 2020, 17(11): 122-123.
|
|
ZHOU L, HE J, YU D D. Development of automatic verification system for buoy-type oxygen inhaler[J]. Metrology & Measurement Technique, 2021, 48(12): 76-79.
|
[6] |
林柯楠, 庄园, 黄咏梅. 基于机器视觉的水表小流量检定方法研究[J]. 计量学报, 2021, 42(9): 1167-1171.
|
|
KANG T T, ZHANG L, WANG Y T, et al. Development of handheld digital multimeter automatic calibration device [J]. Acta Metrologica Sinica, 2019, 40(S1): 107-110.
|
|
WEN K, HAN X, LI C, et al. Intelligent control system for verification process of natural gas flow meter based on neural network[J]. Natural Gas Industry, 2021, 41(7): 124-133.
|
[11] |
SHI X. Person Re-identification Based on Improved Residual Neural Networks[C]//5th International Conference on Communication and Information Systems (ICCIS). Chongqing, China, 2021.
|
[12] |
张世辉, 闫晓蕊, 桑榆. 融合残差及通道注意力机制的单幅图像去雨方法[J]. 计量学报, 2021, 42(1): 20-28.
|
|
HUANG Y L, AI X. Classification of improved residual network in maize leaf disease images[J]. Computer Engineering and Applications, 2021, 57(23): 178-184.
|
[16] |
朱莉, 宋绪秋, 邢鑫, 等. 基于改进ResNet34网络的树种识别研究[J]. 国外电子测量技术, 2022, 41(7): 119-125.
|
[20] |
费业泰. 误差理论与数据处理[M]. 第7版. 北京: 机械工业出版社, 2015.
|
[7] |
康婷婷, 张磊, 王跃佟, 等. 手持式数字多用表自动校准装置的研制[J]. 计量学报, 2019, 40(S1): 107-110.
|
[13] |
黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 178-184.
|
[14] |
ZHANG X, ZOU Y, SHI W. Dilated convolution neural network with LeakyReLU for environmental sound classification [C]//22nd international conference on digital signal processing (DSP). London, UK, 2017.
|
[17] |
LI X, RAI L. Apple leaf disease identification and classification using resnet models[C]//3rd International Conference on Electronic Information and Communication Technology (ICEICT). Shenzhen, China, 2020.
|
|
ZHANG J Y, SUN B, XIE X D, et al. Volume measurement method of trace liquid based on laser and machine vision[J]. Acta Metrologica Sinica, 2018, 39(4): 504-509.
|
|
Lü H H, WANG Z L, ZHANG H. Hyperspectral Image Classification Combining Edge Protection Filter and Deep Residual Network [J]. Laser & Optoelectronics Progress, 2022, 59(16): 262-273.
|
[21] |
JERMAK C J, JAKUBOWICZ M, DEREZYNSKI J, et al. Uncertainty of the air gauge test rig[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(4): 479-485.
|
[3] |
LIU W, WU G, REN F, et al. DFF-ResNet: An insect pest recognition model based on residual networks[J]. Big Data Mining and Analytics, 2020, 3(4): 300-310.
|
|
LIN K N, ZHUANG Y, HUANG Y M. Research on small flow verification method of water meter based on machine vision[J]. Acta Metrologica Sinica, 2021, 42(9): 1167-1171.
|
|
SUN L, SUN B, ZHAO Y X. Development of automatic calibration system for dual-channel medical infusion pumps[J]. Acta Metrologica Sinica, 2019, 40(6): 1064-1070.
|
|
ZHANG S H, YAN X R, SANG Y. Single-image rain removal method based on residual and channel attention mechanism[J]. Acta Metrologica Sinica, 2021, 42(1): 20-28.
|
[15] |
NAYEF B H, ABDULLAH S N H S, SULAIMAN R, et al. Optimized leaky ReLU for handwritten Arabic character recognition using convolution neural networks[J]. Multimedia Tools and Applications, 2022, 81(2): 2065-2094.
|
[19] |
吕欢欢, 王琢璐, 张辉. 边缘保护滤波和深度残差网络结合的高光谱影像分类[J]. 激光与光电子学进展, 2022, 59(16): 262-273.
|
|
ZHU L, SONG X Q, XING X, et al. Research on tree species identification based on improved ResNet34 network[J]. Foreign Electronic Measurement Technology, 2022, 41(07): 119-125.
|
|
|
|