|
|
Study on Influencing Factors of Location Deviation of Sound Transmission Path in Anechoic Chamber Calibration |
RUAN Zhangfeng1,GU Chengcheng1,CHEN Haiyong1,DING Jijie2,MENG Ziwei2 |
1. Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract Anechoic chamber acoustic measurement is an important means to measure the acoustic characteristics of products, and its performance directly affects the accuracy of relevant acoustic tests. The accuracy of measurement process is not only limited by theoretical calculation, but also affected by practical measurement process. Due to the dead weight of the sound transmitting device and the wire rope, the sound transmitting path is deformed from an ideal straight line to a curve, which affects the accuracy of the acoustic performance measurement. Therefore, it is particularly important to calibrate the sound transmission path of anechoic chamber. Finite element simulation focuses on the influence of rope length, tightness and inclination on the sound transmission path, verifies the accuracy of the simulation model through corresponding experiments, and studies the specific influence of different parameters on the sound transmission path through lateral comparison of parameters. Aiming at the study of parameters on the deviation of sound transmission path, a way for the calibration of sound transmission path error from multiple perspectives is provided, which is helpful to improve the accuracy of anechoic chamber measurement device and promote the development of high-precision automatic calibration system of anechoic chamber to a certain extent.
|
Received: 30 December 2022
Published: 03 April 2024
|
|
Fund:Scientific research project of Shanghai Institute of Quality Inspection and Technical Research |
|
|
|
|
WANG Y C. Analysis of Vehicle Vibration and Noise Control Strategy [J]. Car Test Report, 2022(10): 141-143.
|
[4] |
消声室和半消声室声学特性校准规范:JJF 1147—2006[S]. 北京: 中国计量出版社, 2006.
|
[5] |
蒲志强, 姚小兵, 孙磊, 等. 消声室声学性能评价方法探讨 [J]. 中国测试, 2012, 38 (5): 25-28.
|
[7] |
钟静, 姚磊, 桑帅军, 等. (半)自由声场自动校准装置研制及实验研究 [J]. 自动化仪表, 2015, 36 (7): 63-67.
|
[8] |
陈欢, 唐求, 林海军, 等. 一种计算消声室声压级的新方法 [J]. 计量学报, 2020, 41 (2): 210-213.
|
|
ZHENG Y S, NIU F, ZHONG B. Calibration of Anechoic Chamber Using Inverse Square Law and its Data Processing [J]. Metrology Science and Technology, 2022, 66 (7): 54-57.
|
|
PU Z Q, YAO X B, SUN L, et al. Discussion on Performance Assessment of Anechoic Rooms [J]. China Measurement & Testing Technology, 2012, 38 (5): 25-28.
|
[9] |
蒲志强, 孙磊, 鄂治群. 一种用于消声室校准计算反平方律声压级的新方法 [J]. 计量学报, 2013, 34 (5): 466-468.
|
|
YAO L, SANG S J, ZHONG J, et al. Development of Automatic Sound Field Calibration Device and Study of Free Sound Field Calibration Method [J]. China Science And Techonology Achievements, 2013(17): 63.
|
[11] |
李群. 基于消声室检测的自动校准装置的研究 [J]. 质量技术监督研究, 2016(2): 40-42, 52.
|
[12] |
赵莹, 张辉, 刘荣恩, 等. 消声室计量校准方法的探讨 [J]. 计量技术, 2019(3): 26-27, 32.
|
[13] |
高兰, 王月兵, 贾梦雯. 基于圆环阵列的声场仿真及校准实验 [J]. 计量学报, 2020, 41 (9): 1109-1114.
|
[17] |
桑帅军, 何龙标, 裘剑敏, 等. 电容传声器声中心的测量及其对互易校准的影响 [J]. 中国测试, 2017, 43 (4): 15-18.
|
[1] |
王玉春. 汽车振动与噪声控制策略分析 [J]. 汽车测试报告, 2022(10): 141-143.
|
[2] |
郑云山, 牛锋, 钟波. 平方反比规律校准消声室和数据处理 [J]. 计量科学与技术, 2022, 66 (7): 54-57.
|
[3] |
CERRATO G. Automotive Sound Quality Powertrain, Road and Wind Noise [J]. Sound and Vibration, 2009, 43 (4): 16-24.
|
|
ZHAO Y, ZHANG H, LIU R E, et al. Discussion on Measurement Calibration Method of Anechoic Chamber [J]. Measurement Technique, 2019(3): 26-27, 32.
|
[15] |
GHAFARI H, DARDEL M. Parametric Study of Catenary Mooring System on the Dynamic Response of the Semi-submersible Platform [J]. Ocean Engineering, 2018, 153: 319-332.
|
[19] |
李旭, 何龙标, 祝海江, 等. X射线衍射法测量电容传声器的膜片张力 [J]. 计量学报, 2022, 43 (12): 1645-1650.
|
[6] |
BO Z, WANG J, FENG N, et al. An Automatic Calibration System for Anechoic Chamber[C]// International Conference on Mechatronics & Automation. IEEE. 2012.
|
|
ZHONG J, YAO L, SANG S J, et al. Research on Development and Experiment of the Automatic Calibration Device for Free Sound Field and Hemi-free Sound Field [J]. Process Automation Instrumentaion, 2015, 36 (7): 63-67.
|
|
CHEN H, TANG Q, LIN H J, et al. A New Method for Calculating the Sound Pressure Level of Anechoic Chambers [J]. Acta Metrologica Sinica, 2020, 41 (2): 210-213.
|
|
PU Z Q, SUN L, E Z Q. New Method on Estimation of Sound Pressure Level Based the Inverse Law in Anechoic Room Calibration [J]. Acta Metrologica Sinica, 2013, 34 (5): 466-468.
|
|
LI Q. Research on Automatic Calibration Device Based on Anechoic Room Testing [J]. Quality and Technical Supervision Research, 2016(2): 40-42, 52.
|
|
GAO L, WANG Y B, JIA M W. Sound Field Simulation and Calibration Experiment Based on Circular Array [J]. Acta Metrologica Sinica, 2020, 41 (9): 1109-1114.
|
|
SANG S J, HE L B, Qiu J M, et al. Acoustic Center Measurement of Condenser Microphones and its Influence on Reciprocity Calibration [J]. China Measurement & Testing Technology, 2017, 43 (4): 15-18.
|
[18] |
陈红江, 何龙标. 基于相关传声器比较法的传声器低频校准 [J]. 计量学报, 2013, 34 (4): 383-386.
|
[10] |
姚磊, 桑帅军, 钟静, 等. 声场自动校准装置研制及自由声场校准方法研究 [J]. 中国科技成果, 2013(17): 63.
|
[16] |
ZHANG M, FU S, LIU C, et al. Experimental Investigation on Vortex-induced Force of a Steel Catenary Riser under In-plane Vessel Motion [J]. Marine Structures, 2021, 78 (8): 102882.
|
[14] |
MARTINEZ-JIMENEZ R G J. Fractional Solution of the Catenary Curve [J]. Mathematical Methods in the Applied Sciences, 2021, 44 (10): 7969-7978.
|
|
CHEN H J, HE L B. Low Frequency Microphone Calibration Based on the Related Microphones Method [J]. Acta Metrologica Sinica, 2013, 34 (4): 383-386.
|
|
LI X, HE L B, ZHU H J, et al. Measurement of Diaphragm Tension of Condenser Microphone by X-ray Diffraction [J]. Acta Metrologica Sinica, 2022, 43 (12): 1645-1650.
|
|
|
|