|
|
Investigation on the Influence of Alignment Angle Error of the Polarization Analyzer on Polarization Coupling easurement of Fiber Coil |
WANG Xueqin1,CAO Zhifeng2,LIANG Lanju1 |
1. College of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang,Shandong 277160, China
2. Institute of Dongying Special Equipment Inspection, Dongying, Shandong 257091, China |
|
|
Abstract To investigate the influence of the alignment angle error between the polarization axis of polarization analyzer and the fiber polarization axis on the measurement results of the polarization coupling intensity of the fiber coil, the basic principle of using optical coherence domain polarization detection (OCDP) technology to test the polarization coupling intensity of the fiber coil is theoretically analyzed, and the relationship model between the coupling intensity of the polarization coupling point in the fiber coil and the alignment angle of the polarization analyzer is established. According to the relationship model, the variation of the measured value of polarization coupling intensity at the coupling point with the alignment angle of the polarization analyzer is simulated and analyzed. The simulation results show that the measurement error reaches minimum when the alignment angle between the polarization axis of the polarizer and the polarization axis of the fiber coil is 45°. The more the alignment angle deviates from 45°, the greater the intensity measurement error will be. When the alignment angle error between the polarization axis of the polarization analyzer and the polarization axis of the fiber coil is 0.6°, the measurement error of the polarization coupling intensity caused by the alignment angle error is 0.18dB. The measurement error of polarization coupling intensity caused by the error of polarization axis to axis can be less than 1dB by controlling the error of alignment angle within 3°.
|
Received: 19 May 2023
Published: 03 April 2024
|
|
|
|
|
[11] |
张红霞, 张以谟, 井文才, 等. 偏振耦合测试仪中白光干涉包络的提取[J]. 光电子· 激光, 2007, 18(4):450-453.
|
[16] |
杨军, 苑勇贵, 喻张俊, 等. 光学相干域偏振测量技术及其在高精度光纤陀螺器件测量中的应用[J]. 光学学报, 2018, 38(3): 0328007.
|
[1] |
LEF?VRE H C. The fiber-optic gyroscope, 3rd ed[M]. BOSTON: Artech house, 2022.
|
[2] |
邱嘉荦, 王磊, 黄腾超, 等. 干涉式光纤陀螺技术发展综述[J]. 光学学报, 2022, 42(17): 1706004.
|
[3] |
赵坤, 赵小明, 左文龙, 等. 基于超细径光纤的高精度光纤陀螺[J]. 中国惯性技术学报, 2022, 30(5): 615-619.
|
[5] |
宋昱寰, 管练武, 高延滨, 等. 光路偏振串扰误差对闭环光纤陀螺精度影响[J]. 哈尔滨工程大学学报, 2020, 41(8): 1210-1215.
|
|
QIU J L, WANG L, HUANG T C, et al. Review of Development of Interferometric Fiber-Optic Gyroscopes[J]. Acta Optica Sinica, 2022, 42(17): 1706004.
|
|
ZHAO K, ZHAO X M, ZUO W L, et al. High precision fiber optic gyroscope based on ultra-thin fiber[J]. Journal of Chinese Inertial Technology, 2022, 30(5): 615-619.
|
[7] |
郭振武, 温国强, 张红霞, 等. 保偏光纤模式耦合分析及其相干检测[J]. 红外与激光工程, 2012, 41(5): 1283-1286.
|
[9] |
蔡潇雨, 魏佳斯, 孙恺欣, 等. 白光干涉测量系统的测量不确定度评定[J]. 计量学报, 2021, 42(6): 731-737.
|
[12] |
李博, 王霞, 黄澄玉, 等. 气动脉冲压力的激光干涉法测量[J]. 计量学报, 2023, 44(9): 1417-1422.
|
[13] |
王学勤, 袁慧铮, 郑艳彬, 等. 光纤双折射对光纤环保偏能力影响的实验研究[J]. 光电子·激光,2021, 32(4): 431-436.
|
[4] |
WANG L D, LIAO M S, YU F, et al. Thermal sensitivity of birefringence in polarization-maintaining hollow-core photonic bandgap fibers[J]. Photonics, 2023, 10(2): 10020103.
|
|
SONG Y H, GUAN L W, GAO Y B, et al. Influence of polarization crosstalk error of optic path on the accuracy of a closed-loop fiber optic gyroscope[J]. Journal of Harbin Engineering University, 2020, 41(8): 1210-1215.
|
[10] |
ZHANG H L, YUAN Y G, ZHU Y L, et al. Distributed Polarization Characteristic Testing for Optical Closed Loop of Sagnac Interferometer. J. Lightwave Technol. 2022, 40(8), 2548-2555 (2022)
|
|
WANG X Q, ZHENG Y B, LIANG L J. Temperature stability study of polarization maintaining ability [J]. Laser & Infrared, 2022, 52(8): 1230-1237.
|
|
WANG T T, WANG X W, JIN J, et al. Study on the variation mechanism of radiation-induced magnetic field error in space fiber optic gyroscope[J]. Semiconductor Optoelectronics, 2022, 43(4): 689-696.
|
[17] |
王学勤, 张彤, 梁兰菊, 等. 光纤环偏振耦合分布及绕环光纤拍长测试技术[J]. 激光与光电子学进展, 2020, 57(23): 230602.
|
[6] |
LIU J H, LIU Y F, XU T H. Bias error and its thermal drift due to fiber birefringence in interferometric fiber-optic gyroscopes[J]. Optical Fiber Technology, 2020, 55: 102138.
|
|
GUO Z W, WEN G Q, ZHANG H X, et al. Analysis and coherent detection of mode coupling of polarization maintaining fiber[J]. Infrared and laser engineering, 2012, 41(5): 1282-1286.
|
[8] |
YANG Y H, YAN H, LI S, et al. Estimation of gyro bias drift due to distributed polarization cross coupling in the fiber coil[J]. Optics express, 2019, 27(7): 10247-10257.
|
|
CAI X Y, WEI J S, SUN K X, et al. Evaluation of uncertainty in measurement with white-light interference system[J]. Acta Metrologica Sinica, 2021, 42(6): 731-737.
|
|
LI B, WANG X, HUANG C Y, et al. Laser interferometry measurement of gas pulse pressure[J]. Acta Metrologica Sinica, 2023, 44(9): 1417-1422.
|
|
WANG X Q, YUAN H Z, ZHENG Y B, et al. Experimental investigation on the influence of optical fiber birefringence on the polarization maintaining ability of fiber coil[J]. Journal of Optoelectronics·Laser, 2021, 32(4): 431-436.
|
[14] |
王学勤, 郑艳彬, 梁兰菊. 基于白光干涉的光纤环保偏能力温度稳定性研究[J]. 激光与红外, 2022, 52(8): 1230-1237.
|
[15] |
王婷婷, 王晓伟, 金 靖, 等. 空间用光纤陀螺辐射诱导磁场误差变化机理研究[J]. 半导体光电, 2022, 43(4): 689-696.
|
|
WANG X Q, ZHANG T, LIANG L J, et al. Testing technique of polarization-coupling distribution of fiber coil and beat length of used fiber[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230602.
|
|
ZHANG H X, ZHANG Y M, JING W C et al. White light interference envelope extract in polarization coupling analyzer[J]. Journal of Optoelectronics·Laser, 2007, 18(4): 450-453.
|
|
YANG J, YUAN Y G, YU Z J, et al. Optical coherence domain polarimetry technology and its application in measurement for evaluating components of high precision fiber-optic gyroscopes[J]. Acta Optica Sinica, 2018, 38(3): 0328007.
|
[1] |
GUO Chuangwei,GUAN Yuqing,SHEN Yaoqiong,XU Ruishu,ZHU Yanzhen,LIU Liqin,ZHANG Yujie,LEI Lihua,FU Yunxia. Calibration Method for Optical Deflection System Display Screen Based on Surface Fitting[J]. Acta Metrologica Sinica, 2024, 45(3): 419-424. |
|
|
|
|