|
|
Curve Symmetry Center Fitting Algorithm Based on Symmetry Evaluation |
ZHANG Xin1,LIU Haibo1,2,3,XIA Yuguo1 |
1. Wuhan Seismic Metrological Verification & Surveying Engineering Institute, Wuhan, Hubei 430071, China
2. Hubei Earthquake Agency, Wuhan, Hubei 430071, China
3. Key Laboratory of Earthquake Geodesy, China Earthquake Administration, Wuhan, Hubei 430071, China |
|
|
Abstract It is one of the key problems in machine vision measurement to estimate the center position of noisy 1-dimensional images (grayscale curves) lacking shape prior information. With matching error between the curve and its mirror image being used as the symmetry evaluation function, a symmetry center fitting algorithm is proposed. And the and the least square method is used to calculate the best matching point as the symmetry center. The algorithm needs iterative calculation, and may converge to wrong position. By analyzing the possible local convergence caused by the initial value selection of iterative, it is proved that the local extreme point may only appear within the half pixels adjacent to the true value, a convergence point verification strategy is proposed, which solves the problem of erroneous convergence. The robustness of the algorithm under various disturbances is confirmed through simulation and real image verification. Under the interference of strong noise, the position variation of gray centroid method can reach tens or even hundreds of pixels, while the root-mean-square value of the position variation of symmetric centroid fitting algorithm can still remain at about 1 pixel. Under other noise conditions, the performance of symmetric centroid fitting algorithm is also far superior to gray centroid method.
|
Received: 06 September 2023
Published: 25 March 2024
|
|
|
|
|
[1] |
FILLARD J P. Sub-pixel accuracy location estimation from digital signals[J]. Optical Engineering, 1992, 31(11): 2465-2471.
|
|
YU H, LIU B Q, WANG H K, et al. Comparative study of two linear fitting methods for linear CCD image edge detection[J]. Optical Instruments, 2015,37(3): 268-271.
|
[3] |
黄春霞. 基于线阵CCD图像亚像素级别边缘检测方法[J]. 计算机测量与控制, 2022, 30(10):45-50.
|
|
LIU Y H, YAN H, CHEN Z Z, et al. Adaptive canny operator edge detection under strong noise[J]. Optics and Precision Engineering, 2022, 30(3):350-362.
|
|
ZHANG J P, YU F Q. Improved image measurement edge detection based on canny operator[J]. Laser & Optoelectronics Progress, 2020, 57(24): 241024.
|
|
DUAN Z Y, WANG N, ZHAO W H, et al. Algorithm of sub-pixel edge detection based on gauss integral curve fitting[J]. Acta Metrologica Sinica, 2016, 37(04): 371-374.
|
[8] |
蔡怀宇, 于毅, 黄战华, 等. 一种基于曲线拟合提取干涉条纹中心点的新方法[J].光电子·激光, 2006(1): 115-118.
|
|
CAI H Y, YU Y, HUANG Z H, et al. A new method of extracting the center inerference fringes based on polynomial fitting[J]. Journal of Optoelectronics·laser, 2006(01):115-118.
|
[10] |
刘涛, 王宗义, 于秀辉, 等. 基于自适应窗曲线拟合的结构光条纹中心提取[J]. 半导体光电, 2010, 31(1):151-154.
|
[11] |
张瑞峰, 刘畅. 分区间曲线拟合的干涉条纹中心点提取方法[J]. 激光与光电子学进展, 2021, 58(8): 0812002.
|
[12] |
沈良辰, 郭钢祥, 孔明, 等. 基于Grubbs准则和直线线性度拟合的线纹提取算法[J]. 中国测试, 2022, 48(8):46-52.
|
|
SHI S L, YIN D Y. Improved real-time grayscale centroid algorithm[J]. Opto-electronic Engineering, 2013, 40(12):18-24.
|
|
HUANG C X. A subpixel-level edge detection method based on line-array CCD images[J]. Computer Measurement & Control, 2022, 30(10): 45-50.
|
[9] |
高绍雷, 沈建新, 周洪亚. 基于曲线拟合的Placido图像中心提取方法[J].计算机应用, 2011, 31(6): 1621-1623.
|
[13] |
FAROOQ M, ASLAM A, HUSSAIN B, et al. A comparison of image processing techniques for optical interference fringe analysis[J]. Photonic Sensors, 2015, 5(4): 304-311.
|
[14] |
LI C, YE X, GONG Y, et al. A Center-line extraction algorithm of laser stripes based on multi-Gaussian signals fitting[C]// IEEE. 2016 IEEE International Conference on Information and Automation (ICIA).2016: 189-194.
|
[15] |
黄劼, 周肇飞. 基于曲线拟合的非对称采样精度CCD图像中心检测算法[J]. 光电子·激光, 2004, 15(6): 691-694.
|
[16] |
ARES J, ARINES J. Influence of thresholding on centroid statistics: full analytical description[J]. Applied optics, 2004, 43(31): 5796-5805.
|
[2] |
余皓, 刘秉琦, 王海宽, 等.线阵CCD图像两种直线拟合边缘检测方法比较研究[J]. 光学仪器, 2015, 37(3): 268-271.
|
[5] |
张加朋, 于凤芹. 基于 Canny 算子改进型的影像测量边缘检测[J]. 激光与光电子学进展, 2020, 57(24): 241024.
|
[6] |
段振云, 王宁, 赵文辉, 等. 基于高斯积分曲线拟合的亚像素边缘提取算法[J]. 计量学报, 2016, 37(4):371-374.
|
[7] |
张洋. 数字化激光垂准仪及其图像标定系统的研制[D]. 武汉: 华中科技大学, 2021: 33-40.
|
|
LIU T, WANG Z Y, YU X H, et al. Curve fitting method based on adaptive window for center extracting of structured light stripe[J]. Semiconductor Optoelectronics, 2010, 31(1):151-154.
|
|
ZHANG R F, LIU C. Interference fringe center point extraction method based on interval curve fitting[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0812002.
|
[17] |
史少龙, 尹达一. 改进型灰度质心实时算法研究[J]. 光电工程, 2013, 40(12):18-24.
|
[4] |
刘宇涵, 闫河, 陈早早, 等. 强噪声下自适应Canny算子边缘检测[J]. 光学精密工程, 2022, 30(3):350-362.
|
|
GAO S L, SHEN J X, ZHOU H Y. Center extraction of Placido image based on curve fitting[J]. Journal of Computer Applications, 2011, 31(6):1621-1623.
|
|
SHEN L CH, GUO G X, KONG M, et al. An algorithm for line detection based on Grubbs criterion and linear fitting[J]. China Measurement & Test, 2022, 48(8):46-52.
|
|
HUANG J, ZHOU Z F. Study on detection algorithm of the center of unsymmetric sampling precision CCD image based on curve fitting[J]. Journal of Optoelectronics·laser, 2004, 15(6):691-694.
|
|
|
|