|
|
Drift Error Prediction of Laser Interferometer Based on Bayesian Dynamic Model |
LIU Liying,CHENG Zhenying,CHEN Xu,LI Ruijun |
Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei,Anhui 230009, China |
|
|
Abstract Aiming at the drift problem of laser interferometer during long time measurement,a drift error prediction method based on Bayesian dynamic model is proposed.By collecting the drift error sequence of the non-measurement stage,the data characteristics are analyzed and a Bayesian dynamic model is established.Then,the initial information required for recursion is obtained by using the non-information prior distribution method,and the state parameters of the model are trained and estimated by the Bayesian recursive algorithm.Finally,the drift error prediction effect has been verified by experiments based on the Michelson laser interferometer made in the laboratory.The results show that the mean square error of the compensated residual drift error is reduced by 67.85% and 99.08%,respectively,compared with the usual least squares fitting method and neural network modeling method.According to the prediction results of repeated experiments,the mean square error of residual drift error is reduced by more than 82% compared with that before compensation.The validity and robustness of the proposed drift error prediction method based on Bayesian dynamic model are verified.
|
Received: 07 October 2023
Published: 25 March 2024
|
|
|
|
|
[13] |
LI R J, XU P, TANG S T, et al. Thermal stability analysis and optimal design for a two-dimensional angle sensor [J]. Applied Mechanics and Materials, 2017, 868: 3-8.
|
[1] |
GAO W, KIM S W, BOSSE H, et al. Measurement technologies for precision positioning [J]. CIRP Annals, 2015, 64 (2): 773-796.
|
[15] |
陶盼, 李瑞君, 王勇俊. 四自由度测量系统光束漂移抑制方法与系统 [J]. 中国测试, 2021, 47 (8):109-113.
|
[3] |
王冬, 崔建军, 张福民, 等. 用于微位移测量的迈克尔逊激光干涉仪综述 [J]. 计量学报, 2021, 42 (1):1-8.
|
[2] |
林荣炜, 程真英, 何亚雄, 等. XY工作台六自由度误差在线测量和补偿 [J]. 光学精密工程, 2023, 31 (12):1761-1773.
|
[4] |
LIPUS L C, BUDZYN G, ACKO B. Analysis of laser interferometer measurement uncertainty by simulating error sources [J]. International Journal of Simulation Modelling, 2021, 20 (2): 339-350.
|
|
ZHANG D, ZHANG B, FENG Q B. Survey of restraint and compensation for laser beam drift [J]. Optical Instruments, 2006, 28 (6): 89-93.
|
[6] |
KRAMAR J A. Nanometre resolution metrology with the molecular measuring machine [J]. Measurement Science and Technology, 2005, 16 (11): 2121-2128.
|
|
WANG X P, LI S Y. Research on ulter-precision environment temperature control and measurement [J]. China Mechanical Engineering, 2008, 11 (8): 869-871.
|
[8] |
冯建, 李瑞君, 何亚雄, 等. 微纳米三坐标测量机的高精度恒温箱研制 [J]. 计量学报, 2015, 36 (5):455-459.
|
[23] |
MAO C Z, GUO Q J. Thermal Error Modeling of a CNC Machine Tool [J]. Applied Mechanics and Materials, 2013, 303-306: 1782-1785.
|
|
LIN R W, CHENG Z Y, HE Y X, et al. On-line six-degree-of-freedom errors measurement and compensation for XY stages [J]. Optics and Precision Engineering, 2023, 31 (12): 1761-1773.
|
|
WANG D, CUI J J, ZHANG F M, et al. Review of Michelson laser interferometer for micro displacement measurement [J]. Acta Metrologica Sinica, 2021, 42 (1): 1-8.
|
[5] |
张礅, 张斌, 冯其波. 激光光线漂移抑制与补偿方法综述 [J]. 光学仪器, 2006, 28 (6):89-93.
|
[7] |
王宪平, 李圣怡. 超精密环境温度控制及温度测量技术研究 [J]. 中国机械工程, 2008, 11 (8):869-871.
|
|
FENG J, LI R J, HE Y X, et al. Develop of a high precision constant-temperature chamber for micro-nanometric CMM [J]. Acta Metrologica Sinica, 2015, 36 (5): 455-459.
|
[10] |
KIM S W. New design of precision CMM based upon volumetric phase-measuring interferometry [J]. CIRP Annals Manufacturing Technology, 2001, 50 (1): 357-360.
|
[12] |
聂萌, 陈佳琦, 徐峰. 柔性压力传感器温度漂移补偿结构设计 [J]. 传感技术学报, 2019, 32 (10): 1443-1446.
|
[14] |
CHENG Z Y, LIU L Y, XU P, et al. Modeling and Optimal Design for a High Stability 2D Optoelectronic Angle Sensor [J]. Sensors, 2019, 19 (20): 4409.
|
|
TAO P, LI R J, WANG Y J. Beam drift suppression method and system for a 4 DOF laser measurement system [J]. China Measurement & Test, 2021, 47 (8): 109-113.
|
[16] |
TAO L, LIU Z G, ZHANG W B, et al. Real-time drift error compensation in a self-reference frequency-scanning fiber interferometer [J]. Optics Communications, 2017, 382: 99-104.
|
[20] |
王自强, 钟敏成, 周金华, 等. 光镊系统随机漂移建模和误差补偿 [J]. 光学精密工程, 2014, 22 (6): 1403-1409.
|
[22] |
李光耀, 侯宏录, 杜鹃, 等. 采用小波降噪和神经网络的FOG温度漂移补偿方法 [J]. 光电工程, 2019, 46 (9):58-66.
|
[24] |
杨遂军, 康国炼, 叶树亮. 基于最小二乘支持向量机的硅压阻式传感器温度补偿 [J]. 传感技术学报, 2016, 29 (4):500-505.
|
[25] |
张孝令, 刘福升. 贝叶斯动态模型及其预测[M]. 济南:山东科学技术出版社, 1992.
|
[9] |
LI R J, XIANG M, HE Y X, et al. Development of a high-precision touch-trigger probe using a single sensor[J].Applied Sciences, 2016, 6(3): 86.
|
[11] |
DONKER R L, WIDDERSHOVEN I, SPAAN H A M. Isara 400: Enabling ultra-precision coordinate metrology for large parts[C]//EUSPEN International Conference. Holland, Delft, 2010.
|
|
NIE M, CHEN J Q, XU F. A Temperature Drift Compensation Structure Design of Flexible Pressure Sensor [J]. Chinese Journal of Sensors and Actuators, 2019, 32 (10): 1443-1446.
|
[17] |
KUANG C F, FENG Q B, ZHANG B, et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module [J]. Sensors and Actuators A-Physical, 2005, 125: 100-108.
|
[18] |
PLOTKIN A, PAPERNO E. Compensation of Temperature-Drift Errors with No Additional Hardware [J]. IEEE Instrumentation and Measurement Magazine, 2007, 10 (5): 20-25.
|
[19] |
SONG J L, SHI Z Y, DU B H, et al. MEMS gyroscope wavelet de-noising method based on redundancy and sparse representation [J]. Microelectronic Engineering, 2019, 217 (9): 111112.
|
|
WANG Z Q, ZHONG M C, ZHOU J H, et al. Modeling and compensation of random drift error for optical tweezer system [J]. Optics and Precision Engineering, 2014, 22 (6): 1403-1409.
|
[21] |
NARASIMHAPPA M, NAYAK J, TERRA M H, et al. ARMA model based adaptive unscented fading Kalman filter for reducing drift of fiber optic gyroscope [J]. Sensors and Actuators A, 2016, 251: 42-51.
|
|
LI G Y, HOU H L, DU J, et al. FOG temperature drift compensation method based on wavelet denoising and neural network [J]. Opto-Electronic Engineering, 2019, 46 (9): 58-66.
|
|
YANG S J, KANG G L, YE S L. Temperature compen-sation of silicon piezoresistive sensor based on least square-support vector machine [J]. Chinese Journal of Sensors and Actuators, 2016, 29 (4): 500-505.
|
[26] |
FAN K C, ZHOU H, LI R J. Development of a high precision coplanar stage by using miniature Michelson interferometer [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15 (11): 2251-2256.
|
[27] |
ZHAO W K, LI R J, LI X, et al. Analog Electronic Method for Solving Nonlinear Errors of Sinusoidal Waves in Interferometry [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9901301.
|
|
|
|