|
|
A Dynamic Measurement Method of Gravity Gradient Based on Torsion Balance |
YE Ziwei1,WANG Fei2,BAO Fu2,HUANG Anyi1,YU Ye3,HU Hongbo2,WANG Ruolin1 |
1. School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan,Hubei 430070,China
2. Hubei Institute of Measurement and Testing Technology,Wuhan,Hubei 430223,China
3. Wuhan Optics Valley Aerospace Sanjiang Laser Industry Technology Research Institute Co. Ltd,Wuhan,Hubei 430073,China |
|
|
Abstract To study the problem that the traditional torsion balance gravity gradiometer has high accuracy but poor stability and low measurement efficiency,introducing the dynamic modulation method and applying the Z-type torsion balance structure to the dynamic measurement mode to realize the simultaneous measurement of gravity horizontal gradient and gravity curvature. Using rotating filter and genetic algorithm in the process of signal processing can effectively eliminate the influence of free oscillation of torsion pendulum on target peak value and extract the amplitude and phase of target frequency. The simulation results show that the uncertainty component introduced by the genetic algorithm to extract the target gravity gradient value from the dynamic measurement mode signal does not exceed 0.0077E(1E=10-9/s2). When genetic algorithm is used for data post-processing,the measurement uncertainty of the system is evaluated as 0.0582E.
|
Received: 12 October 2022
Published: 22 January 2024
|
|
|
|
|
[4] |
胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 4(4): 10-19.
|
[5] |
徐进义, 粟多武, 王启宇, 等. 超小型绝对重力仪主机系统设计[J]. 计量学报, 2022, 43(4): 489-493.
|
[13] |
王向杰, 淡丹辉, 闫兴非, 等. 现场监测脉动风速的APES法幅值谱相位谱估计[J]. 振动、测试与诊断, 2019, 39(2): 431-437, 452.
|
[2] |
DIFRANCESCO D. Advances and Challenges in the Development and Deployment of Gravity Gradiometer Systems[C]//EGM 2007 International Workshop, 2007.
|
[6] |
SZAB Z. The history of the 125 year old Etvs torsion balance[J]. Acta Geodaetica Et Geophysica, 2016, 51(2): 273-293.
|
[9] |
ZHANG T X, BAI Y Z, HONG W, et al. A torque type full tensor gravity gradiometer based on a flexure-strip suspension[J]. Review of Scientific Instruments, 2020, 91(6): 064501. 1-064501. 8.
|
[14] |
顾玮. 遗传算法概述[J]. 办公自动化(综合版), 2016(7): 34-35.
|
[21] |
徐家豪. 扭秤法检验弱等效原理实验中的引力梯度效应及其应用研究[D]. 武汉: 中国地质大学, 2018.
|
[23] |
潘小青, 刘超飞, 朱云. 扭摆法测量转动惯量实验数据处理及误差讨论[J]. 物理与工程, 2016, 26(1): 46-50.
|
[24] |
牟丽爽, 冯金扬, 吴书清, 等. 重力关键比对点连续观测不确定度评估[J]. 计量学报, 2022, 43(12): 1639-1644.
|
[25] |
田兴, 朱嘉婧, 李威, 等. 重力测量领域发展方向及重力传感器高分辨率测试方法综述[J]. 新技术新工艺, 2022, 414(6): 1-7.
|
[1] |
吴琼, 滕云田, 张兵, 等. 世界重力梯度仪的研究现状[J]. 物探与化探, 2013, 37(5): 761-768.
|
|
PENG Y W, ZHAO L Z, QU S B, et al. The research and development of a two-dimensional flexure hinge gradiometer[J]. Geophysical and Geochemical Exploration, 2006, 30(5): 401-405, 409.
|
[11] |
QUINN B G. Estimating frequency by interpolation using Fourier coefficients[J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 1994, 42(5): 1264-1268.
|
[15] |
YU Y, HU X, SHI W, et al. Measuring and adjusting the distance between the center of mass and optical center of a free-falling body in an absolute gravimeter[J]. Metrologia, 2022, 59(4): 045001.
|
|
SUN M T, LIU B. DBN structure adaptive learning algorithm based on improved genetic algorithms[J]. Acta Metrologica Sinica, 2021, 42(1): 91-99.
|
[20] |
余烨, 胡翔, 熊超, 等. 一种用于测量重力梯度的扭秤装置[J]. 计量学报, 2018, 39(2): 159-162.
|
[26] |
曾华霖. 重力梯度测量的现状及复兴[J]. 物探与化探, 1999(1): 1-6.
|
|
XU J Y, SU D W, WANG Q Y, et al. Design of host system for miniature absolute gravimeter[J]. Acta Metrologica Sinica, 2022, 43(4): 489-493.
|
|
WANG X J, DAN D H, YAN X F, et al. Estimation of fluctuating wind amplitude and phase spectrum using APES algorithm based on field monitored data[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2): 431-437, 452.
|
[18] |
余烨. 扭秤重力梯度仪的设计与误差分析[D]. 武汉: 华中科技大学, 2017.
|
|
MOU L S, FENG J Y, WU S Q, et al. Accuracy evaluation of gravity continuous observation at key comparison site of absolute gravimeter[J]. Acta Metrologica Sinica, 2022, 43(12): 1639-1644.
|
|
HU P H, ZHAO M, HUANG H, et al. Review on the Development of Airborn/Marine Gravimetry Instruments[J]. Navigation Positioning and Timing, 2017, 4 (4): 10-19.
|
[7] |
彭益武, 赵立珍, 屈少波, 等. 二维簧片重力梯度仪的研制[J]. 物探与化探, 2006, 30(5): 401-405, 409.
|
[12] |
STOICA P, LI H, LI J. A new derivation of the APES filter[J]. IEEE Signal Processing Letters, 1999, 6(8): 205-206.
|
|
GU W. Overview of genetic algorithms[J]. Office Automation, 2016(7): 34-35.
|
|
ZHANG X F, ZHANG F Y, LI K, et al. Optimization of leaf-spring-type recovery mechanism for low-frequency standard vibrator based on genetic algorithm[J]. Acta Metrologica Sinica, 2021, 42(11): 1459-1465.
|
[19] |
李刚. 基于静电悬浮的扭秤式重力梯度仪关键技术研究[D]. 北京: 清华大学, 2016.
|
|
PAN X Q, LIU C F, ZHU Y. Discussion on experimental data processing and error in rotational inertia measurement by method of torsion pendulum[J]. Physics and Engineering, 2016, 26(1): 46-50.
|
|
TIAN X, ZHU J J, LI W, et al. Research on the development direction of gravity measurement field and high resolution measurement methods of gravity sensors[J]. New Technology & New Process, 2022, 414(6): 1-7.
|
|
WU Q, TENG Y T, ZHANG B, et al. The research situation of the gradiometer in the world[J]. Geophysical and Geochemical Exploration, 2013, 37(5): 761-768.
|
[3] |
DIFRANCESCO D, GRIERSON A, KAPUTA D, et al. Gravity gradiometer systems-advances and challenges[J]. Geophysical Prospecting, 2009, 57(4): 615-623.
|
[8] |
彭益武. 基于电容传感的扭矩型簧片重力梯度仪的实验研究[D]. 武汉: 华中科技大学, 2006.
|
[10] |
LUO J, XU J H, LIU Q, et al. An improved torque type gravity gradiometer with dynamic modulation[J]. Acta Geodaetica et Geophysica, 2017, 53(2): 171-187.
|
[16] |
孙美婷, 刘彬. 基于改进遗传算法的DBN结构自适应学习算法[J]. 计量学报, 2021, 42(1): 91-99.
|
[17] |
张旭飞, 张锋阳, 李凯, 等. 基于遗传算法的低频标准振动台簧片式回复结构优化[J]. 计量学报, 2021, 42(11): 1459-1465.
|
|
YU Y, HU X, XIONG C, et al. A torsion balance device for measuring the gravity gradient[J]. Acta Metrologica Sinica, 2018, 39(2): 159-162.
|
[22] |
SU Y. A new test of the weak equivalence principle[D]. Seattle: University of Washington, 1992.
|
|
ZENG H L. Present state and revival of gravity gradiometer[J]. Geophysical and Geochemical Exploration, 1999(1): 1-6.
|
|
|
|