|
|
Tool Wear Prediction for Nickel-Based Superalloy Milling |
YANG Li |
Mechanical and Electrical Engineering,Sichuan Engineering Technical College,Deyang,Sichuan 618000,China |
|
|
Abstract A new deep learning method based on stacked sparse autoencoders and multi-sensor feature fusion is proposed for milling tool wear prediction by building a nickel-based high temperature alloy milling experimental test platform and analysing tool wear variation patterns. Signal features are extracted in the time domain,frequency domain and time-frequency domain,and the optimal multi-sensor features are determined through correlation analysis,which is input to SSAE for deep feature learning. A tool wear prediction model is established using a bidirectional long-short term memory,and different experimental data sets of milling wear are applied to verify the prediction performance of the trained model. The prediction results show that the root-mean-square error is reduced by at least 9.6% compared to each of the known models, proving that the combination of multi-sensor feature fusion and deep learning methods can improve the prediction performance.
|
Received: 16 September 2022
Published: 27 December 2023
|
|
|
|
|
|
Wang J. Application of nickel-based superalloy in aeroengine[J]. China New Telecommunications, 2019, 21(1): 221-222.
|
[2] |
李红俊, 康玮明, 苏金东. 镍基高温合金加工研究[J]. 一重技术, 2017 (2): 68-71.
|
[3] |
黄揆. 镍基高温合金机械加工性能分析研究[J]. 机械工程师, 2010 (6): 160-161.
|
|
He Y H. Turning of Nickel Base Alloy[J]. Metal Working(Metal Cutting), 2010(9): 36-37.
|
|
Zhang K F, Yuan H Q, Nie P. Tool wear state monitoring based on generalized fractal dimension [J]. Vibration and Shock, 2014, 33(1): 162-164.
|
|
Luo H, Zhang D H, Luo M. Research progress of cutting tool wear and remaining life prediction of difficult-to-machine materials in aviation[J]. China Mechanical Engineering, 2021, 32(22): 2647-2666.
|
[7] |
吴雪峰, 陈建锋, 尹雪峰, 等. 基于激光加热辅助铣削的GA-BP神经网络刀具寿命预测[J]. 工具技术, 2018, 52(7): 57-61.
|
[8] |
安华, 王国峰, 王喆, 等. 基于深度学习理论的刀具状态监测及剩余寿命预测方法[J]. 电子测量与仪器学报, 2019, 33(9): 64-70.
|
|
Wang Q, Li Y G, Hao X Z, et al. Dynamic prediction method of CNC machining tool life based on online learning[J]. Aeronautical Manufacturing Technology, 2019, 62(21): 22-30.
|
|
Wu F H, Zhong H, Zhang Q, et al. Tool Wear Condition Monitoring Based on Convolution-gated Recurrent Neural Network[J]. Acta Metrologica Sinica, 2021, 42(8): 1034-1040.
|
|
Huang Z P, Huang X Y, Li L, et al. Research on data-driven milling tool life prediction[J]. Manufacturing Technology & Machine Tool, 2020 (1): 153-161.
|
[16] |
郭保苏, 韩天杰, 张宇, 等. 基于带阈值模块一维残差网络的刀具磨损监测方法[J]. 计量学报, 2022, 43(4): 501-506.
|
[17] |
罗金, 童靳于, 郑近德, 等. 基于EEMD和堆叠稀疏自编码的滚动轴承故障诊断方法[J]. 噪声与振动控制, 2020(2): 115-120
|
|
Li H J, Kang W M, Su J D. Research on machining of nickel-based superalloys[J]. CFHI Technology, 2017 (2): 68-71.
|
|
Huang K. Study on Machinability of Nickel Base Superalloy [J]. Mechanical Engineer, 2010 (6): 160-161.
|
|
Wu X F, Chen J F, Yin X F, et al. GA-BP neural network tool life prediction based on laser heating-assisted milling[J]. Tool Engineering, 2018, 52(7): 57-61.
|
|
An H, Wang G F, Wang Z, et al. Tool condition monitoring and remaining life prediction method based on deep learning theory[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(9): 64-70.
|
[13] |
Tao Z, An Q, Liu G, et al. A Novel Method for Tool Condition Monitoring Based on Long Short-term Memory and Hidden Markov Model Hybrid Framework in High-speed Milling Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2019, 105(7/8): 3165-3182.
|
[15] |
何志坚, 周志雄, 黄向明. 基于变分模态分解的关联维数及相关向量机的刀具磨损状态监测[J]. 计量学报, 2018, 39(2): 182-186.
|
[1] |
王君. 镍基高温合金在航空发动机中的应用[J]. 中国新通信, 2019, 21(1): 221-222.
|
[4] |
何艳华. 镍基合金的车削加工[J]. 金属加工(冷加工), 2010(9): 36-37.
|
[5] |
张锴锋, 袁惠群, 聂鹏. 基于广义分形维数的刀具磨损状态监测 [J]. 振动与冲击, 2014, 33(1): 162-164.
|
[6] |
罗欢, 张定华, 罗明. 航空难加工材料切削刀具磨损与剩余寿命预测研究进展[J]. 中国机械工程, 2021, 32(22): 2647-2666.
|
[9] |
王强, 李迎光, 郝小忠, 等. 基于在线学习的数控加工刀具寿命动态预测方法[J]. 航空制造技术, 2019, 62(21): 22-30.
|
[10] |
吴凤和, 钟浩, 章钦, 等. 基于卷积门控循环神经网络的刀具磨损状态监测[J]. 计量学报, 2021, 42(8): 1034-1040.
|
[11] |
黄志平, 黄新宇, 李亮, 等. 基于数据驱动的铣削刀具寿命预测研究[J]. 制造技术与机床, 2020 (1): 153-161.
|
|
He Z J, Zhou Z X, Huang X M. Tool Wear State Monitoring Based on Variational Mode Decomposition and Correlation Dimension and Relevance Vector Machine[J]. Acta Metrologica Sinica, 2018, 39(2): 182-186.
|
|
Guo B S, Han T J, Zhang Y, et al. Tool Wear Monitoring Method Based on One-Dimensional Residual Network with Threshold Module[J]. Acta Metrologica Sinica, 2022, 43(4): 501-506.
|
|
Luo J, Tong J Y, Zheng J D, et al. Fault diagnosis method for rolling bearings based on EEMD and stacked sparse self-coding [J]. Noise and Vibration Control, 2020 (2): 115-120.
|
[12] |
Kong D, Chen Y, Li N, et al. Tool wear estimation in end milling of Titanium alloy using NPE and a novel WOA-SVM model[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 5219-5232.
|
[14] |
Wang P, Liu Z, Gao R X, et al. Heterogeneous Data-driven Hybrid Machine Learning for Tool Condition Prognosis[J]. CIRP Annals, 2019, 68(1): 455-458.
|
|
|
|