|
|
Influencing Factors Analysis in Quantitative Evaluation of Andersen Six-level Impact Microbial Sampler |
LIU Jia-qi,ZHANG Guo-cheng,TIAN Ying,WU Dan,SHEN Shang-yi,LI Bo-ya,HUO Sheng-wei |
National Quality Supervision and Inspection Center for Ecological & Environmental Products,Beijing Institute of Metrology, Beijing 100029,China |
|
|
Abstract Due to the lack of standards and detection technical specifications for Andersen six-level impact microbial samplers, an evaluation method based on the capture efficiency curve for the aerodynamic particle size at a sampling physical efficiency of 50% (Da50) was proposed, and the detection and theoretical calculation of Da50 as well as its influencing factors were analyzed. Five domestic brands of Andersen samplers were tested, and it was found that the measurement results of different manufacturers' products varied significantly, the first or multi-level capture efficiency curves of multiple products corresponded to Da50 outside the particle size range. Research has found that the difference in sampler performance is not caused by insufficient aperture processing accuracy. The research results indicate that the higher the culture medium, the smaller the obtained Da50, under the same height of the culture medium, the ideal distance between layers is about 10mm. Therefore, the impact height is an important factor affecting the performance of Andersen six-level impact microbial samplers.
|
Received: 25 June 2023
Published: 27 December 2023
|
|
|
|
|
|
Wu Y, Wang B, Song Z J, et al. Comparing and analyzing three bioaerosol samplers with different principles[J]. Chinese Journal of Health Laboratory Technology, 2022, 32(8): 901-904.
|
|
Guo J S, Cheng P B, Lü M, et al. Design and performance of a high flow rate wet wall cyclone bioaerosol sampler [J]. Chinese Journal of Disinfection, 2022, 39(6): 401-406, 409.
|
|
Liu D D, Huang P S, Li D W, et al. Research on virtual impact respirable dust sampler based on convex wall [J]. Journal of Safety Science and Technology, 2022, 18(2): 220-224.
|
|
Li N, Lu J C, Wen Z B, et al. Real-time ambient bioaerosols monitoring and the Andersen six-stage sampling result: a comparative study [J]. Military Medical Sciences, 2011, 35(7): 527-530.
|
|
Chen L, Che H, Ren L L, et al. Study on collecting viral aerosols with Anderson Air Biosampler [J]. Chinese Pharmaceutical biotechnology, 2010, 5(5): 342-347.
|
[7] |
陈拼. 微生物气溶胶采样器设计及其应用研究[D]. 杭州: 浙江大学, 2018.
|
[9] |
Alvis G T, Neal F H. Calibration of the Anderson 2000 Disposable Air Sampler[J]. American Industrial Hygiene Association Journal, 1975, 36(6): 447-451.
|
[1] |
吴彦, 王兵, 宋姝娟, 等. 3款不同原理生物气溶胶采样器的对比分析[J]. 中国卫生检验杂志, 2022, 32(8): 901-904.
|
[3] |
刘丹丹, 黄鹏升, 李德文, 等. 基于凸形壁面的虚拟冲击式呼吸性粉尘采样器研究[J]. 中国安全生产科学技术, 2022, 18(2): 220-224.
|
[4] |
李娜, 鹿建春, 温占波, 等. 大气生物气溶胶实时监测与Andersen6级采样结果的对比研究[J]. 军事医学, 2011, 35(7): 527-530.
|
[5] |
陈岚, 车红, 任丽丽, 等. 用安德森空气生物采样器采集病毒气溶胶的研究[J]. 中国医药生物技术, 2010, 5(5): 342-347.
|
[6] |
Andersen A A. New sampler for the collection, sizing, and enumeration of viable airborne particles[J]. Journal of Bacteriology, 1958. 47(6): 471-484.
|
[10] |
Fredericks S, Saylor J R. Ring-shaped deposition patterns in small nozzle-to-plate distance impactors [J]. Aerosol Science and Technology, 2018, 52(1): 30-37.
|
[12] |
Li L, Jeong H B, Jae H P, et al. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols[J]. Environmental Research, 2021, 194: 110615.
|
[14] |
Zheng Y, Yao M. Liquid impinger BioSampler’s performance for size-resolved viable bioaerosol particles[J]. Journal of Aerosol Science. 2017, 106: 34-42.
|
[16] |
刘佳琪, 张国城, 吴丹, 等. 安德森六级撞击采样器采集效率评价方法研究[J]. 计量学报, 2022, 43(6): 825-829.
|
[18] |
刘佳琪, 张国城, 吴丹, 等. 气旋式生物气溶胶采样器采集物理效率评价方法研究[J]. 计量学报, 2022, 43(10): 1378-1381.
|
[2] |
郭建树, 程鹏博, 吕蒙, 等. 大流量湿壁气旋式生物气溶胶采样器的设计及其性能评价[J]. 中国消毒学杂志, 2022, 39(6): 401-406, 409.
|
[8] |
JJF 1826-2020 空气微生物采样器校准规范 [S].
|
|
Liu J Q, Zhang G C, Wu D, et al. Study on Evaluation Method of Acquisition Efficiency of Anderson Six-Stage Impact Sampler [J]. Acta Metrologica Sinica, 2022, 43(6): 825-829.
|
[17] |
刘佳琪, 张国城, 吴丹, 等. 基于空气动力学的浮游菌采样器采集物理效率检测方法的研究[J]. 计量学报, 2022, 43(9): 1216-1219.
|
[18] |
刘文成, 傅博强, 刘乃毓, 等. 生物气溶胶采样器采样效率计量评价方法研究进展[J]. 计量学报, 2023, 44(10): 1617-1625.
|
[19] |
刘佳琪, 张国城, 吴丹, 等. PM10切割器捕集效率评价装置及方法研究[J]. 环境科学学报, 2021, 41(6): 2340-2346.
|
[20] |
刘佳琪, 张国城, 吴丹, 等. 基于静态箱法的PM2.5切割器捕集效率评价及拟合曲线优化研究[J]. 计量学报, 2021, 42(10): 1398-1403.
|
|
Liu J Q, Zhang G C, Wu D, et al. Study on Efficiency Evaluation and Curve Fitting Optimization of PM2. 5 Particle Separating Device Based on Static Chamber Method[J]. Acta Metrologica Sinica, 2021, 42(10): 1398-1403.
|
[21] |
刘佳琪, 张国城, 吴丹, 等. PM1切割器的评价及其与PM2.5切割器的切换研究[J]. 环境科学学报, 2021, 41(12): 5093-5097.
|
[22] |
刘佳琪, 张国城, 吴丹, 等. 几种常见非国标法颗粒物切割器性能评价及问题分析[J]. 环境科学学报, 2021. 41(11): 4489-4493.
|
[23] |
刘佳琪, 张国城, 赵晓宁, 等. 进气流量对PM2.5切割器捕集效率的影响分析[J]. 计量学报, 2021, 42(4): 532-536.
|
[24] |
HJ/T 93-2003 PM10采样器技术要求及检测方法 [S].
|
|
Tian Y, Zhang G C, Liu J Q, et al. Effect of Sampling Flow Rate and Nozzle-plate Spacing on Collection Efficiency of Plankton Sampler[J]. Acta Metrologica Sinica, 2023, 44(7): 1154-1158.
|
[11] |
Xuan D N, Yang Z, Jeffrey D E, et al. Evaluation of Bioaerosol Samplers for Airborne Escherichia Coli Carried by Poultry Litter Particles[J]. Journal of the ASABE, 2022, 65(4): 825-833.
|
[13] |
Wachara K, Panya D. Prediction of Size Distribution and Mass Concentration of Smoke Particles on Moisture Content and Combustion Period from Para Rubber Wood Burning[J]. Applied Sciences. 2021, 11(12): 5649.
|
[15] |
Guo J, Zheng X, Qin T, et al. An experimental method for efficiently evaluating the size-resolved sampling efficiency of liquid-absorption aerosol samplers[J]. Scientific Reports. 2022, 12(1): 4745.
|
|
Liu J Q, Zhang G C, Wu D, et al. Study on Evaluation Method of Physical Efficiency of Cyclone Microbiological Sampler [J]. Acta Metrologica Sinica, 2022, 43(10): 1378-1381.
|
|
Liu W C, Fu B Q, Liu N Y, et al. Research Progress on Metrological Evaluation Methods for Sampling Efficiency of Bioaerosol Samplers[J]. Acta Metrologica Sinica, 2023, 44(10): 1617-1625.
|
|
Liu J Q, Zhang G C, Wu D, et al. Research on the efficiency evaluation device and method of PM10 cutter [J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2340-2346.
|
|
Liu J Q, Zhang G C, Wu D, et al. Performance evaluation and problem analysis of several common non-national standard particulate matter cutters[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4489-4493.
|
|
Liu J Q, Zhang G C, Zhao X N, et al. The Influence of Air Inlet Flow Rate on the Capture Efficiency of PM2.5 Cutter[J]. Acta Metrologica Sinica, 2021, 42(4): 532-536.
|
[25] |
田莹, 张国城, 刘佳琪, 等. 采样流量和孔板间距对浮游菌采样器采集效率的影响[J]. 计量学报, 2023, 44(7): 1154-1158.
|
|
Liu J Q, Zhang G C, Wu D, et al. Study on the Detection Method of Sampling Physical Efficiency of Planktonic Sampler based on Aerodynamics [J]. Acta Metrologica Sinica, 2022, 43(9): 1216-1219.
|
|
Liu J Q, Zhang G C, Wu D, et al. Evaluation of PM1 cutters and switching between PM2.5 cutters [J]. Acta Scientiae Circumstantiae, 2021, 41(12): 5093-5097.
|
|
|
|