|
|
All-fiber Displacement Measurement System Based on Extrinsic F-P Interferometry |
MA Ying-han1,ZHANG Shu2,3,PI Lei2,YAN Han1,HU Jia-cheng1,SHI Yu-Shu2,3 |
1. Colloge of Metrology & Measurement Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China
2. National Institute of Metrology,Beijing 100029,China
3. Shenzhen Institute of Technology Innovation, National Institute of Metrology,Shenzhen,Guangdong 518107, China |
|
|
Abstract In order to solve the problem that the traditional separation mirror group interferometer is too large to be applied in the environment with limited space, all-fiber F-P interferometry displacement measurement technology is studied. According to the interference principle, the influence of different reflectivity conditions on the interference signal form is analyzed. When the reflectivity is 4%, the light intensity signal of multi-beam interference will be approximately a sine function, and the displacement measurement principle is verified by finite element simulation. An all-fiber displacement measurement system based on extrinsic F-P interferometry is designed and built. The experimental results show that the standard deviation of static noise voltage within 1min of the system is 23.3mV, and the linear correlation coefficient R2 of displacement measurement results between the system and commercial XL-80 laser interferometer is 1 within 1mm displacement, and the measurement repeatability of the system is better than that of commercial laser interferometer.
|
Received: 03 April 2023
Published: 27 December 2023
|
|
|
|
|
[1] |
施玉书, 张树, 连笑怡, 等. 毫米级纳米几何特征尺寸计量标准装置多自由度激光干涉计量系统 [J]. 计量学报, 2020, 41 (7): 769-774.
|
[2] |
杨宏兴, 付海金, 胡鹏程, 等. 超精密高速激光干涉位移测量技术与仪器 [J]. 激光与光电子学进展, 2022, 59 (9): 305-319.
|
[3] |
谭久彬, 蒋庄德, 雒建斌, 等. 高端精密装备精度测量基础理论与方法 [J]. 中国科学基金, 2022 (6): 955-962.
|
[4] |
施玉书, 李伟, 余茜茜, 等. 基于原子力显微术的5nm台阶高度标准物质溯源与定值技术研究 [J]. 仪器仪表学报, 2020, 41 (3): 79-86.
|
[5] |
钱璐帅,李正坤,白洋, 等. 面向能量天平同步测量的磁链差测量方法研究[J]. 计量学报, 2021, 42 (9): 1121-1127.
|
[6] |
白洋. 能量天平质量量子基准中线圈组相对位置测量方法研究 [D]. 哈尔滨:哈尔滨工业大学, 2017.
|
[10] |
张树桓, 江毅. 非本征法布里-珀罗干涉型传感器非周期信号的相位解调方法 [J]. 光学学报, 2022, 42 (9):81-86.
|
[3] |
阎晗,张树,皮磊, 等. 基于激光干涉与电容传感复合校准技术的纳米微动台分辨力评价方法研究[J]. 计量学报, 2023, 44 (8): 1196-1201.
|
[8] |
Hu P, Zhu J, Zhai X, et al. DC-offset-free homodyne interferometer and its nonlinearity compensation [J]. Optics Express, 2015 (7): 8399-8408.
|
[11] |
赵春柳, 李嘉丽, 徐贲, 等. 光纤微腔法布里-珀罗干涉传感器研究进展 [J]. 应用科学学报, 2020, 38 (2): 226-259.
|
|
Yang H X, Fu H J, Hu P C, et al. Ultra-Precision and High-Speed Laser Interferometer Displacement Measurement Technology and Instrument [J]. Laser & Optoelectronics Progress, 2022, 59 (9): 305-319.
|
|
Yan H, Zhang S, Pi L, et al. Research on Resolution Evaluation Method of Nano-Positioning Stage Based on Laser Interference and Capacitive Sensor Composite Calibration Technology[J]. Acta Metrologica Sinica, 2023, 44 (8): 1196-1201.
|
[7] |
Zhu J, Hu P, Tan J. Homodyne laser vibrometer capable of detecting nanometer displacements accurately by using optical shutters [J]. Applied optics, 2015 (34): 10196-10199.
|
[12] |
Xu F, Ren D, Shi X, et al. High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm [J]. Optics Letters, 2012, 37 (2): 133-135.
|
[14] |
Du B, Xu X, He J, et al. In-Fiber Collimator-Based Fabry-Perot Interferometer with Enhanced Vibration Sensitivity [J]. Sensors, 2019, 19 (2):435.
|
[16] |
高丙坤, 丛至诚, 孙雨. 基于差动光纤干涉仪的位移测量方法 [J]. 吉林大学学报 (信息科学版), 2021, 39 (4): 363-367.
|
[17] |
Zhang Z, Li C, Huang Z. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry [J]. Optics Communications, 2019, 436: 192-196.
|
|
Shi Y S, Zhang S, Lian X Y, et al. Multi-DOF Interferometry System for Metrological Standard Device for Nano-geometrical Characteristic Size in Millimeter Range [J]. Acta Metrologica Sinica, 2020, 41 (7): 769-774.
|
|
Tan J B, Jiang Z D, Luo J B, et al. Accuracy Measurement Theory and Method for High-end Precision Equipment [J]. Bulletin of National Natural Science Foundation of China, 2022 (6): 955-962.
|
|
Shi Y S, Li W, Yu X X, et al. Research on the Traceability and Characterization Technology of 5nm Step Height Reference Material Based on Atomic Force Microscopy [J]. Chinese Journal of Scientific Instrument, 2020, 41 (3): 79-86.
|
|
Qian L S, Li Z K, Bai Y, et al. Research on the Flux Linkage Difference Measurement Method for Synchronous Measurement Based Joule Balance[J]. Acta Metrologica Sinica, 2021, 42 (9): 1121-1127.
|
|
Zhang S H, Jiang Y. Phase Demodulation Method for Non-Periodic Signal in Extrinsic Fabry-Perot Interferometric Sensor [J]. Acta Optica Sinica, 2022, 42 (9): 81-86.
|
|
Zhao C L, Li J L, Xu B, et al. Research Progress of Fiber Micro Cavity Fabry-Perot Interference Sensors [J]. Journal of Applied Sciences, 2020, 38 (2): 226-259.
|
[13] |
Wu Y, Zhang Y, Wu J, et al. Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer [J]. Scientific Reports, 2017, 7 (1):10736.
|
[18] |
Wang X F, Guo X Y, Wang Y, et al. All-fiber differential interferometer for nanometric displacement measurement [J]. Optics Communications, 2020, 475:126283.
|
[9] |
Rao Y J. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors [J]. Optical Fiber Technical, 2006, 12 (3): 227-237.
|
|
Gao B K, Cong Z C, Sun Y. Displacement Measurement Method Based on Differential Optical Fiber Interferometer [J]. Journal of Jilin University(Information Science Edition), 2021, 39 (4): 363-367.
|
[15] |
Tao S C, Dong X P, Lai B W. A Sensor for Simultaneous Measurement of Displacement and Temperature Based on the Fabry-Perot Effect of a Fiber Bragg Grating [J]. IEEE Sensors Journal, 2017, 17 (2): 261-266.
|
|
|
|