|
|
Wavelength Measurement by Michelson Interferometry Based on Fractional Fourier Transform Signal Processing |
JIANG Sheng1,WU Jin-min1,LU Ming-feng2,WEI Hong-tao2,FAN Jun-fang1,ZHANG Feng2,TAO Ran2 |
1. School of Automation,Beijing Information Science and Technology University,Beijing 100192,China
2. School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China |
|
|
Abstract The mathematical model of the fringe pattern obtained by Michelson interferometric measurement of wavelength is established, its linear frequency modulation signal (chirp signal) characteristics are revealed, and Michelsonss interferometric fringe processing based on the fractional Fourier transform signal processing method is proposed to realize the laser wavelength measurement. The experimental results show that the proposed wavelength measurement method is feasible. The average relative error of wavelength measurement is about 0.39% for lasers in the wavelength range of 400nm to 635nm. The average relative error in wavelength measurement is still less than 1% when the interferogram is contaminated by Gaussian white noise.
|
Received: 19 May 2023
Published: 17 November 2023
|
|
|
|
|
[2] |
顾青桃, 王鑫宇, 安保林,等. 双红外激光测温定标源样品温度场对测量结果的影响 [J].计量学报, 2023, 44 (5): 722-728.
|
[4] |
Dobosz M, Kouchowski M. Overview of the laser-wavelength measurement methods [J]. Optics and Lasers in Engineering, 2017, 98: 107-117.
|
[1] |
黄聪, 张圣梓, 王将,等. 激光稳频技术在大气探测激光雷达中的应用研究进展 [J].计量学报, 2023, 44 (2): 186-194.
|
|
Gu Q T, Wang X Y, An B L, et al. Influence of Sample Temperature Field of Double Infrared Laser Temperature Calibration Source on Measurement Results [J]. Acta Metrologica Sinica, 2023, 44 (5): 722-728.
|
[5] |
Stern B, Kim K, Gariah H, et al. Athermal silicon photonic wavemeter for broadband and high-accuracy wavelength measurements [J]. Optics Express, 2021, 29 (19): 29946-29959.
|
[20] |
Ikram M, Hussain G. Michelson interferometer for precision angle measurement [J]. Applied Optics, 1999, 38 (1): 113-120.
|
|
Huang C, Zhang S Z, Wang J, et al. Review of Laser Frequency Stabilization Technology in Atmospheric Detection Lidar [J]. Acta Metrologica Sinica, 2023, 44 (2): 186-194.
|
[3] |
胡摇, 李腾飞, 郝群, 等. 基于部分补偿干涉的非球面顶点曲率半径加工误差测量 [J]. 计量学报, 2020, 41 (8): 903-908.
|
[8] |
lvarez-Tamayo R I, Prieto-Corts P, Durn-Snchez M, et al. Laser Wavelength Estimation Method Based on a High-Birefringence Fiber Loop Mirror [J]. Photonic Sensors, 2019, 9: 89-96.
|
[10] |
Thattey S S, Dongare A S, Dasgupta K, et al. A wavemeter for measuring changes in wavelength of pulsed dye lasers [J]. Review of Scientific Instruments, 1994, 65 (8): 2470-2474.
|
[11] |
沈法华, 徐菁苑, 范安冬, 等. 基于双法布里-珀罗干涉仪多纵模米散射多普勒激光雷达技术 [J]. 红外与激光工程, 2003, 52 (7): 189-198.
|
[19] |
崔芬萍, 江一帆, 裴世鑫. 基于迈克尔逊干涉仪的波长计设计与实现 [J]. 实验科学与技术, 2022, 20 (1): 22-27.
|
[6] |
Zhou P, Sun W, Liang S, et al. Digital long-term laser frequency stabilization with an optical frequency comb [J]. Applied Optics, 2021, 60 (21): 6097-6102.
|
[12] |
任冬梅, 朱振宇, 段小艳, 等. 一种基于法布里-珀罗干涉仪的位移测量方法 [J]. 计测技术, 2018, 38 (4): 26-29.
|
[13] |
Gray D F, Smith K A, Dunning F B. Simple compact Fizeau wavemeter [J]. Applied Optics, 1986, 25 (8): 1339-1343.
|
|
Ma Z Y, Chen L, Zheng D H, et al. System error calibration for 300mm vertical Fizeau interferometer based on liquid reference [J]. Infrared and Laser Engineering, 2022, 51 (2): 448-457.
|
|
Sun Q Y, Chen L, Zheng D H, et al. Dynamic Fizeau interferometer using low-coherence light source [J]. Infrared and Laser Engineering, 2018, 47 (2): 211-217.
|
[16] |
Yan L, Chen B, Yang W, et al. A novel laser wavelength meter based on the measurement of synthetic wavelength [J]. Review of Scientific Instruments, 2010, 81 (11): 115104.
|
[17] |
王冬,崔建军,张福民,等. 用于微位移测量的迈克尔逊激光干涉仪综述[J].计量学报, 2021, 42(1): 1-8.
|
[18] |
邬佳璐, 方波, 李剑敏, 等. 基于迈克尔逊干涉法的太赫兹波长精密测量 [J]. 计量学报, 2022, 43 (9): 1147-1153.
|
[21] |
Braun M, Maier J, Liening H. A high precision compact Michelson-Sagnac wavemeter [J]. Journal of Physics E: Scientific Instruments, 1987, 20 (10): 1247-1249.
|
|
Hu Y, Li T F, Hao Q, et al. Vertex radius of curvature fabrication error measurement of aspheric surface in partial compensation interferometry [J]. Acta Metrologica Sinica, 2020, 41 (8): 903-908.
|
|
Shen F H, Xu J Y, Fan A D, et al. Based on the double Fabry-Perot interferometer [J]. Infrared and Laser Engineering, 2003, 52 (7): 189-198.
|
[22] |
Castell R, Demtrder W, Fischer A, et al. The accuracy of laser wavelength meters [J]. Applied Physics B, 1985, 38: 1-10.
|
[7] |
Kai L, Cheng M, Sun J. Minute Wavelength shift detection of actively mode-locked fiber laser based on stimulated Brillouin scattering Effect [J]. Journal of Lightwave Technology, 2021, 39 (13): 4447-4452.
|
[9] |
Mohagheghian M, Sabouri S G. Laser wavelength measurement based on a digital micromirror device [J]. IEEE Photonics Technology Letters, 2018, 30 (13): 1186-1189.
|
[14] |
马致遥, 陈磊, 郑东晖, 等. 液体基准平面的300mm立式斐索干涉仪系统误差标定 [J]. 红外与激光工程, 2022, 51 (2): 448-457.
|
[15] |
孙沁园, 陈磊, 郑东晖, 等. 采用短相干光源的动态斐索干涉仪 [J]. 红外与激光工程, 2018, 47 (2): 211-217.
|
|
Wu J L, Fang B, Li J M, et al. Research on precision measurement technology of terahertz wavelength based on interferometry [J]. Acta Metrologica Sinica, 2022, 43 (9): 1147-1153.
|
|
Cui F P, Jiang Y F, Pei S X. Design and implementation of wavelength meter based on michelson interferometer [J]. Experiment Science and Technology, 2022, 20 (1): 22-27.
|
|
Ren D M, Zhu Z Y, Duan X Y, et al. A Displacement Measurement Method Based on Fabry-Perot Interferometry [J]. Metrology & Measurement Technology, 2018, 38 (4): 26-29.
|
[17] |
Ikram M, Hussain G. Michelson interferometer for precision angle measurement [J]. Applied Optics, 1999, 38 (1): 113-120.
|
|
Wang D, Cui J J, Zhang F M, et al. Review of Michelson Laser Interferometer for Micro Displacement Measurement[J]. Acta Metrologica Sinica, 2021, 42(1): 1-8.
|
[23] |
Bennett S J, Gill P. A digital interferometer for wavelength measurement [J]. Journal of Physics E: Scientific Instruments, 1980, 13 (2): 174-177.
|
[24] |
Lu M F, Zhang F, Tao R, et al. Parameter estimation of optical fringes with quadratic phase using the fractional Fourier transform [J]. Optics and Lasers in Engineering, 2015, 74: 1-16.
|
|
|
|