|
|
Estimation of NOx Emission Concentration from Coal-fired Boilers of Power Stations Based on Variable Selection |
WANG Long-xian,ZHAO Wen-jie |
School of Control and Computer Engineering,North China Electric Power University,Baoding,Hebei 071003,China |
|
|
Abstract To study the measurement delay of NOx emission concentration of coal-fired boilers in power stations, a prediction model of NOx emission concentration of coal-fired boilers in power stations based on mutual information (MI) and long short-term memory neural network (LSTM) was proposed. Firstly, the delay time between the candidate input variable and the output variable NOx concentration was calculated using mutual information, and the MRMR algorithm was introduced to screen out the optimal feature subset, and the optimal feature subset was used as the input of LSTM model. The prediction model of NOx emission concentration of boiler is established. The simulation results show that the root mean square error (RMSE) and mean absolute error (MAE) of the proposed model are 4.626mg/m3 and 3.836mg/m3, respectively. Compared with the LSTM model without variable selection and delay consideration, the prediction accuracy is significantly improved.
|
Received: 31 May 2022
Published: 10 October 2023
|
|
|
|
|
[7] |
王广龙, 吕猛, 赵文杰. 基于遗传算法的电站锅炉NOx排放量LS-SVM建模[J]. 自动化与仪器仪表, 2016, 196(2): 70-72.
|
[11] |
李开拓, 彭慧, 周晓锋, 等. 基于多种相关性度量的特征选择方法研究[J]. 小型微型计算机系统, 2017, 38(4): 696-700.
|
|
Liang Z H. Study and Engineering Application of High Efficiency and Low NOx Coordinated Optimization Control System for Coal-Fired Boilers Based on New Air Pollutant Emission Standard [J]. Proceedings of the CSEE, 2014, 34(S1): 122-129.
|
|
Li Z P, Jiang Z Y. Soft Sensor of NOx at SCR Entrance Considering Deviation Compensation PSO-BP Model [J]. Journal of Lanzhou Jiaotong University, 2020, 39(2): 58-63.
|
[3] |
牛培峰, 彭鹏. 基于改进最优觅食算法的锅炉NOx排放预测研究[J]. 计量学报, 2020, 41(7): 879-885.
|
[4] |
牛培峰, 马云鹏, 张京, 等. 基于相关向量机的电站锅炉NOx燃烧优化[J]. 计量学报, 2016, 37(2): 191-196.
|
[5] |
Hao Z, Zheng L, Cen K. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler [J]. Energy Conversion and Management, 2010, 51(3): 580-586.
|
[6] |
顾燕萍, 赵文杰, 吴占松. 基于最小二乘支持向量机的电站锅炉燃烧优化[J]. 中国电机工程学报, 2010, 30(17): 91-97.
|
[8] |
Zhai Y, Ding X, Jin X, et al. Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay [J]. Applied Soft Computing, 2020, 89: 85912-89919.
|
[9] |
杨国田, 王英男, 李新利, 等. 基于互信息变量选择与LSTM的电站锅炉NOx排放动态预测[J]. 华北电力大学学报(自然科学版), 2020, 47(3): 66-74.
|
[10] |
杨蓉, 杨林, 谭盛兰, 等. 基于遗传算法——优化长短期记忆神经网络的柴油机瞬态NOx排放预测模型研究[J]. 内燃机工程, 2022, 43(1): 10-17.
|
|
Li K T, Peng H, Zhou X F, et al. Feature Selection Algorithm Based on Multiple Correlation Measures[J]. Journal of Chinese Computer Systems, 2017, 38(4): 696-700.
|
[17] |
赵彦涛, 单泽宇, 常跃进, 等. 基于MI-LSSVM的水泥生料细度软测量建模[J]. 仪器仪表学报, 2017, 38(2): 487-496.
|
[1] |
梁志宏. 基于我国新大气污染排放标准下的燃煤锅炉高效低NOx协调优化系统研究及工程应用[J]. 中国电机工程学报, 2014, 34(S1): 122-129.
|
[2] |
李忠鹏, 姜子运. 考虑偏差补偿PSO-BP模型的SCR入口NOx软测量[J]. 兰州交通大学学报, 2020, 39(2): 58-63.
|
|
Gu Y P, Zhao W J, Wu Z S. Combustion Optimization for Utility Boiler Based on Least Square-support Vector Machine [J]. Proceedings of the CSEE, 2010, 30(17): 91-97.
|
|
Wang G L, Lü M, Zhao W J. Modeling of NOx Emissions of Power Station Boilers Based on Genetic Algorithms [J]. Automation and Instrumentation, 2016, 196(2): 70-72.
|
[12] |
金秀章, 李京. 基于互信息PSO-LSSVM的SO2浓度预测[J]. 计量学报, 2021, 42(5): 675-680.
|
[13] |
李梓瑞, 王慧琴, 胡燕, 等. 基于深度学习和最大相关最小冗余的火焰图像检测方法[J]. 激光与光电子学进展, 2020, 57(10): 160-170.
|
[14] |
Kang L, Thompson S, Peng J, et al. Modelling and prediction of NOx emission in a coal-fired power generation plant [J]. Control Engineering Practice, 2004, 12(6): 707-723.
|
|
Liu Y, Yu J, Jin X Z. NOx mass concentration prediction based on feature optimization and improved LSTM network[J]. Thermal Power Generation, 2021, 50(7): 162-169.
|
|
Zhao Y T, Shan Z Y, Chang Y J, et al. Soft sensor modeling for cement based on least squares support vector machine and mutual information[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 487-496.
|
[18] |
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(8): 1226-1238.
|
[20] |
何群, 尹飞飞, 武鑫, 等. 基于长短期记忆网络的风电机组齿轮箱故障预测[J]. 计量学报, 2020, 41(10): 1284-1290.
|
|
Niu P F, Peng P. Prediction of NOx Emission of Boiler Based on Improved Optimal Foraging Algorithm [J]. Acta Metrologica Sinica, 2020, 41(7): 879-885.
|
|
Niu P F, Ma Y P, Zhang J, et al. Utility Boilers NOx Combustion Optimization Based on Relevance Vector Machine [J]. Acta Metrologica Sinica, 2016, 37(2): 191-196.
|
|
Yang G T, Wang Y N, Li X L, et al. Dynamic Prediction of Boiler NOx Emission Based on Mutual Information Variable Selection and LSTM [J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(3): 66-74.
|
|
Yang R, Yang L, Tan S L, et al. Prediction Model for Transient NOx Emission of Diesel Engine Based on GA- Long-Short-Term Memory (LSTM) Neural Network[J]. Chinese Internal Combustion Engine Engineering, 2022, 43(1): 10-17.
|
[15] |
刘岳, 于静, 金秀章. 基于特征优化和改进长短期记忆神经网络的NOx质量浓度预测[J]. 热力发电, 2021, 50(7): 162-169.
|
[16] |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets[J]. Science, 2011, 334(6062): 1518-1524.
|
|
Jin X Z, Li J. Prediction of SO2 Concentration Based on Mutual Information PSO-LSSVM[J]. Acta Metrologica Sinica, 2021, 42(5): 675-680.
|
|
Li Z R, Wang H Q, Hu Y, et al. Flame Image Detection Method Based on Deep Learning with Maximal Relevance and Minimal Redundancy [J]. Laser & Optoelectronics Progress, 2020, 57(10): 160-170.
|
[19] |
Graves A, Jürgen Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610.
|
|
He Q, Yin F F, Wu X, et al. Fault Prediction of Wind Turbine Gearbox Based on Long Short-term Memory Network[J]. Acta Metrologica Sinica, 2020, 41(10): 1284-1290.
|
|
|
|