|
|
SCR Inlet of Thermal Power Plant Based on ARIMA-OSELM Prediction of NOx Concentration |
JIN Xiu-zhang,CHEN Jia-zheng,LI Yang-feng |
School of Control and Computer Engineering, North China Electric Power University, Baoding, Hebei 071003, China |
|
|
Abstract It is difficult to accurately measure the inlet NOx concentration in selective catalytic reduction flue gas denitration system (SCR) for the combustion system of thermal power plant due to complex operating conditions and large delay. Therefore, a method to predict NOx concentration at SCR inlet of thermal power plant based on ARIMA-OSELM neural network combination model was proposed. The method was compared from two combination perspectives: optimal weight and residual optimization. The above method was applied to the prediction of SCR inlet concentration in a thermal power plant. The results show that the combined model based on ARIMA-OSELM residual optimization has the highest prediction accuracy, and its effect is better than that of ARIMA-OSELM optimal weight combined prediction model and single ARIMA and OSELM neural network prediction model. The obtain evaluation indexes FMAPE, MRMSE and R2 are 0.190, 1.364 and 0.978, respectively.
|
Received: 30 January 2023
Published: 21 September 2023
|
|
|
|
|
[2] |
梁天琪, 徐鸿, 郑天林, 等. 热电厂连续监测系统CEMS烟气污染物测量不确定度研究[J]. 计量学报, 2021, 42(5): 668-674.
|
|
Plant by Continuous Emission Monitoring System[J]. Acta Metrologica Sinica, 2021, 42(5): 668-674.
|
|
Lu J C, Wang L. Study ofshort-term load forecasting based on ANN and time series[J]. Electric Power, 2005(7): 15-18.
|
|
Dong Z, Yan L Q. Modelling and Simulation for NOx Emission Concentration of SCR Denitrification System[J]. Journal of System Simulation, 2020, 32(2): 172-181.
|
[3] |
闫浩思, 赵文杰. 基于MIC和MPA-KELM的脱硫出口SO2浓度预测[J]. 计量学报, 2023, 44(2): 271-278.
|
[4] |
吕游, 刘吉臻, 杨婷婷, 等. 基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J]. 仪器仪表学报, 2013, 34(11): 2418-2424.
|
[5] |
Fu J, Xiao H, Wang T, et al. Prediction Model of Desulfurization Efficiency of Coal-Fired Power Plants Based on Long Short-Term Memory Neural Network[C]// 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Atlanta, USA, 2019.
|
[7] |
范京道, 黄玉鑫, 闫振国, 等. ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究[J]. 工矿自动化, 2022, 48(9): 134-139.
|
[8] |
王鑫, 李安桂, 李扬, 等. 基于ARIMA-LSTM模型的综合能源系统负荷与风光资源预测[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(5): 762-769.
|
|
Wang X, Li A G, Li Y, et al. Multivariate load prediction and wind-solar resource characteristic quantity prediction of integrated energy system based on ARIMA-LSTM model[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(5): 762-769.
|
[10] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feed-forward neural networks[C]//IEEE International Joint Conference on Neural Network. Montreal, Canada, 2005.
|
[12] |
宋国君, 国潇丹, 杨 啸, 等. 沈阳市 PM2. 5 浓度 ARIMA-SVM组合预测研究[J]. 中国环境科学, 2018, 38(11): 4031-4039.
|
[13] |
马增辉, 徐慧仪, 朱润潮. 基于互信息和PID神经网络的SCR脱硝扰动补偿控制[J]. 热能动力工程, 2020, 35(5): 281-288.
|
[15] |
岳继光, 杨臻明, 孙强, 等. 区间时间序列的混合预测模型[J]. 控制与决策, 2013, 28(12): 1915-1920.
|
[16] |
李艺珍, 岳春芳. 金沟河流域径流极值时间序列平稳性检验[J]. 水电能源科学, 2019, 37(10): 21-24.
|
|
Liang T Q, Xu H, Zheng T L, et al. Measurement Uncertainty in Flue Gas Pollutants from Thermal Power
|
|
Fan J D, Huang Y X, Yan Z G, et al. Research on gas concentration prediction driven by ARIMA-SVM combined model[J]. Journal of Mine Automation, 2022, 48(9): 134-139.
|
|
Ma Z H, Yu H Y, Zhu R C. Disturbance Compensation Control of SCR Denitration Based on Mutual Information and PID Neural Network[J]. Thermal Power Engineering, 2020, 35(5): 281-288.
|
[14] |
刘岳, 于静, 金秀章. 基于特征优化和改进长短期记忆神经网络的NOx质量浓度预测[J]. 热力发电, 2021, 50(7): 162-169.
|
[17] |
Schwarz G E. Estimating the dimension of a model[J]. Annals of Statistics, 1978, 6(2): 461-464.
|
[1] |
董泽, 闫来清. SCR脱硝系统 NOx 排放浓度建模与仿真[J]. 系统仿真学报, 2020, 32(2): 172-181.
|
[6] |
卢建昌, 王柳. 基于时序分析的神经网络短期负荷预测模型研究[J]. 中国电力, 2005(7): 15-18.
|
|
Song G J, Guo X D, Yang X, et al. ARIMA-SVM combination prediction of PM2.5 concentration in Shenyang [J]. China Environmental Science, 2018, 38(11): 4031-4039.
|
[18] |
嵇晓燕, 杨凯, 陈亚男, 等. 基于ARIMA和Prophet的水质预测集成学习模型[J]. 水资源保护, 2022, 38(6): 111-115.
|
|
Yan H S, Zhao W J. Prediction of SO2 Concentration at Desulfurization Outlet Based on MIC and MPA-KELM[J]. Acta Metrologica Sinica, 2023, 44(2): 271-278.
|
|
Lü Y, Liu J Z, Yang T T, et al. NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument, 2013, 34(11): 2418-2424.
|
[9] |
Fan D Y, Sun H, Yao J, et al. Well production forecasting based on ARIMA-LSTM model considering manual operations[J]. Energy, 2021, 220: 119708.
|
[11] |
Zeng Q S, Quan S P, Jin Z Q. Short-term traffic flows forecasting by fusing BP neural network and ARIMA [J]. Journal of Zhengzhou University Engineering Scienc, 2015, 32(4): 60-63.
|
|
Yue J G, Yang Z M, Sun Q, et al. Hybrid model for interval-valued time series[J]. Control and Decision, 2013, 28(12): 1915-1920.
|
|
Li Y Z, Yue C F. Stability Test of Runoff Extreme Time Series in Jingou River Basin[J]. Water Resources and Power, 2019, 37(10): 21-24.
|
|
Liu Y, Yu J, Jin X Z. NOx Concentration Prediction Based on Feature Optimization and Improved LSTM Network[J]. Thermal Power Generation, 2021, 50(7): 162-169.
|
|
Ji X Y, Yang K, Chen Y N, et al. An ensemble learning model for water quality forecast based on ARIMA and Prophet[J]. Water Resources Protection, 2022, 38(6): 111-115.
|
|
|
|