|
|
Reserches on High Stability Infrared Planar Blackbody Radiation Source |
FENG Guo-jin,WU Zhi-feng,ZHENG Chun-di |
National Institute of Metrology, Beijing 10029, China |
|
|
Abstract In order to meet the requirements of infrared radiation calibration of infrared instrument in the complex environment on site, two sets of portable infrared thermal radiation sources were developed with high stability and the effective radiation surface is 400mm×400mm. One of them adopted the principle of temperature control based on closed fluid, and mainly worked in a relatively low temperature working area 10℃ lower than the ambient temperature, which was used as a reference low temperature point for environmental radiation. The other set adopted the principle of large-area TEC temperature control, which mainly worked in a relatively high temperature working area 10℃ higher than the ambient temperature. The surface emissivity of the two sets of infrared radiation sources was higher than 0.97, the temperature control stability was better than 0.01℃/h, and the surface temperature uniformity of the infrared radiation source was better than 0.2℃.
|
Received: 07 December 2022
Published: 22 August 2023
|
|
Fund:Research on Key Measurement Technology of artificial Intelligence multimodal sensing |
|
|
|
|
Liang P, Gao J B. Spectroradiometric Calibration of IR Target Simulator[J]. Laser & Infrared, 2003, 33(3):197-199.
|
[14] |
马宇轩,冯国进. 常温黑体光谱发射率校准技术研究[J]. 计量学报, 2022, 43(9): 1161-1165.
|
[2] |
刘建平, 张灰, 占春连, 等.光谱辐照度测量的数学模型及其方法研究[J]. 应用光学,2005, 26(6):70-73.
|
[3] |
吴国忠, 张海玲,齐晗兵, 等. 采用参考发射率法提高红外点温仪测温精度研究[J]. 计量学报, 2007, 28(z1):165-168.
|
|
Wu G Z, Zhang H L, Qi H B, et al. The Improvement of Measurement Precision of Infrared Nod Temperature Instrument with Reference Emissivity[J]. Acta Metroloica Sinica, 2007, 28(z1):165-168.
|
[5] |
高红波, 吴伟钢, 曾智, 等. 反射式灰阶测试卡测量装置及方法研究[J]. 计量学报, 2022, 43(7): 851-855.
|
[6] |
De Vries G, Beek J F, Lucassen G W, et al. Effects of light losses in double integrating spheres on optical properties estimation[J]. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5:944-947.
|
[9] |
张磊, 郑小兵, 张黎明, 等. 定量化红外遥感应用的高精度水浴黑体[J]. 光学技术, 2007, 33(2): 245-248,251.
|
[13] |
马宇轩, 冯国进, 刘子龙, 等. 表面微结构对平面黑体反射比的影响研究[J]. 应用光学, 2020, 41(8): 1-6.
|
[16] |
宋健, 郝小鹏, 胡朝云, 等. 真空镓固定点黑体辐射源研制[J]. 计量学报, 2022, 43(2): 163-168.
|
[18] |
JJF 1032-2005 光学辐射计量名词及定义[S]. 2005.
|
[1] |
梁培, 高教波. 红外目标模拟器的光谱辐照度校准[J]. 激光与红外, 2003, 33(3):197-199.
|
[7] |
Hanssen L. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples[J]. Applied Optics, 2001, 40: 3196-3204.
|
[8] |
Bienk Ewa J, Eskildsen Svent S. Effect of surface preparation on the nucleation of diamond on silicon[J]. Diamond and Related Materials, 1993, 2(2-4): 432-437.
|
[10] |
He X, Li Y B, Wang L D, et al. High emissivity coatings for high temperature application: Progress and prospect[J]. Thin Solid Films, 2009, 517(17): 5120-5129.
|
[11] |
Adibekyan A, Kononogova E, Monte C, et al. High-Accuracy Emissivity Data on the Coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6). DOI:10.1007/s10765-017-2212-z.
|
|
Ma Y X, Feng G J. Research on Calibration Technology of Spectral Emissivity of Blackbody at Normal Temperature[J]. Acta Metrologica Sinica, 2022, 43(9): 1161-1165.
|
[15] |
Feng G, Yu W, Yuan L, et al. Greatly enhanced infrared normal spectral emissivity of microstructured silicon using a femtosecond laser[J]. Materials Letters, 2011. 65: 1238-1240.
|
[17] |
Feng G, Li Y,Wang Y, et al. Ultrahigh infrared normal spectral emissivity of microstructured silicon coating Au film[J]. Optics Letters, 2012, 37(3): 299-301.
|
[4] |
郑小兵, 吴浩宇, 章骏平, 等. 高精度光辐射定标和标准传递方法[J]. 科学通报, 2000, 45(12):1341-1344.
|
|
Gao H B,Wu W G, Zeng Z, et al. Research on Measuring Device and Method of Reflective Grey Scale Test Card[J]. Acta Metrologica Sinica, 2022, 43(7): 851-855.
|
[12] |
Leonard H, Sergey M, Vladimir K, et al. Infrared Spectral Emissivity Characterization Facility at NIST[C] //Thermosense XXVI. 2004:1-12.
|
|
Ma Y X, Feng G J, Liu Z L, et al. Research on influence of surface microstructure on plane blackbody reflectance[J]. Journal of Applied Optics, 2020, 41(8): 1015-1019.
|
|
Liu J P, Zhang H, Zhan C L, et al. Mathematical model and method for measurement of spectral irradiance[J]. J Applied Optics, 2005, 26(6):70-73.
|
|
Zhang L, Zhen X B, Zhang L M, et al. High accuracy water bath blackbody based on the information quantification of infrared remote sensing[J]. Optical Technique, 2007, 33(2): 245-248.
|
|
Song J, Hao X P, Hu C Y, et al. Development of Vacuum Gallium Fixed-point Blackbody[J]. Acta Metrologica Sinica, 2022, 43(2): 163-168.
|
|
|
|