|
|
Fabrication and Test of High Quality Factor MgF2 Crystal Microcavity |
QU Zhi-er1,2,PAN Yi-jie1,LIU Xian-wen2,ZHANG Cheng1,2,WANG Jin1,QU Ji-feng1 |
1. Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China;
2. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Based on a linear motor, a high precision scale and a mechanical feedback unit, a precision automatic grinding and polishing system was developed. The system enabled accurately control the size, thickness and shape of the crystal microcavities during preparation. The trapezoidal micro-disk cavity of magnesium fluoride crystal with high quality factor was fabricated by preforming, rough grinding, rough polishing and fine polishing. The surface roughness of magnesium fluoride crystal after precision polishing was characterized to be 2.84nm using a white light interferometer. By setting up a taper fiber and crystal microcavity coupling testing system, the quality factor of the prepared crystal microcavity was measured to be 4.55×108 at 1550nm by the optical cavity ring-down method.
|
Received: 03 January 2023
Published: 22 August 2023
|
|
|
|
|
[3] |
王志芳, 王书涛, 王贵川, 等. 空芯光子晶体带隙光纤用于甲烷检测的研究[J]. 计量学报, 2019, 40(6): 1135-1139.
|
[4] |
Ilchenko V S, Matsko A B. Optical resonators with whispering-gallery modes-part II: applications [J]. IEEE Journal of selected topics in quantum electronics, 2006, 12(1): 15-32.
|
[7] |
He L, özdemir? K, Yang L. Whispering gallery microcavity lasers [J]. Laser & Photonics Reviews, 2013, 7(1): 60-82.
|
[21] |
赫明钊, 林百科, 李建双. 基于双波长频率梳的绝对测距系统研究 [J]. 计量学报, 2017, 38(S1): 51-55.
|
[22] |
熊祎缇,康果果,张诚,等. 基于侧边耦合一维光子晶体微腔的高分辨率光子温度计[J]. 计量学报, 2022, 43(9): 1109-1114.
|
[2] |
梅明城,韩琪娜,施杨,等. 小型化硅基微腔光子测温系统[J]. 计量学报, 2023, 44(7): 1052-1058.
|
[9] |
O′shea D, Junge C, Pllinger M, et al. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators [J]. Applied Physics B, 2011, 105(1): 129-148.
|
[10] |
Savchenkov A A, Ilchenko V S, Byrd J, et al. Whispering-gallery mode based opto-electronic oscillators [C] //2010 IEEE International Frequency Control Symposium. IEEE, 2010: 554-557.
|
[12] |
Zheng Y, Pu M, Yi A, et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator [J]. Optics Express, 2019, 27(9): 13053-13060.
|
[14] |
Bhola B, Song H C, Tazawa H, et al. Polymer microresonator strain sensors [J]. IEEE Photonics Technology Letters, 2005, 17(4): 867-869.
|
[17] |
Liang W, Savchenkov A A, Matsko A B, et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator [J]. Optics Letters, 2011, 36(12): 2290-2292.
|
[20] |
杨煜, 张磊, 王克逸. 基于氟化镁晶体微腔产生宽光谱范围克尔光频梳及色散调控研究 [J].光学精密工程, 2022, 30(4): 403-410.
|
[6] |
Jiang X, Qavi A J, Huang S H, et al. Whispering-gallery sensors [J]. Matter, 2020, 3(2): 371-392.
|
[8] |
Liang W, Ilchenko V, Eliyahu D, et al. Whispering gallery mode optical gyroscope [C]//2016 IEEE International Symposium on Inertial Sensors and Systems. 2016: 89-92.
|
[18] |
Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes [J]. Nature Photonics, 2018, 12(11).
|
[1] |
Vahala K J. Optical microcavities[J]. Nature, 2003, 424: 839-846.
|
[19] |
沈远. 氟化镁微腔光频梳产生研究 [D]. 安徽: 中国科学技术大学, 2021.
|
|
Wang Z F, Wang S T, Wang G C, et al. Research on the detection of methane using hollow photonic band gap fiber [J]. Acta Metrologica Sinica, 2019, 40(6): 1135-1139.
|
[5] |
Lin G, Coillet A, Chembo Y K. Nonlinear photonics with high-Q whispering-gallery-mode resonators [J]. Advances in Optics and Photonics, 2017, 9(4): 828-890.
|
[13] |
Liu X, Bruch A W, Gong Z, et al. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform [J]. Optica, 2018, 5(10): 1279-1282.
|
[15] |
Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators [J]. Optics Letters, 1996, 21(7): 453-455.
|
[16] |
Tavernier H, Salzenstein P, Volyanskiy K, et al. Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications [J]. IEEE Photonics Technology Letters, 2010, 22(22): 1629-1631.
|
|
He M Z, Lin B K, Li J S. Absolute distance measurement using dual wavelength frequency comb [J]. Acta Metrologica Sinica, 2017, 38(S1): 51-55.
|
|
Xiong Y T, Kang G G, Zhang C, et al. High Resolution and Practical Photonic Thermometer by Side-coupled One-dimensional Photonic Crystal Microcavity[J]. Acta Metrologica Sinica, 2022, 43(9): 1109-1114.
|
[23] |
Gorodetsky M L , Pryamikov A D , Ilchenko V S. Rayleigh scattering in high-Q microspheres [J]. Journal of the Optical Society of America B, 2000, 17(6): 1051-1057.
|
|
Mei M C,Han Q N, Shi Y, et al. A Miniaturized Silicon Microcavity Based Photonic Temperature Measurement System[J]. Acta Metrologica Sinica, 2023, 44(7): 1052-1058.
|
[11] |
Ghalanos G N, Silver J M, Del Bino L, et al. Kerr-nonlinearity-induced mode-splitting in optical microresonators [J]. Physical Review Letters, 2020, 124(22): 223901.
|
|
Yang Y, Zhang L, Wang K Y. Research on generating broad-spectrum Kerr optical frequency comb and dispersion control based on magnesium fluoride crystal micro-resonator [J]. Optics and Precision Engineering, 2022, 30(4): 403-410.
|
[24] |
Poirson J , Bretenaker F , Vallet M , et al. Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses [J]. Journal of the Optical Society of America B, 1997, 14(11): 2811-2817.
|
|
|
|