|
|
Research on Saturation Absorption Frequency Stabilization System Based on Rb MEMS Vapor Cell |
LIU Ya-lei1,2,JIA Shuo2,JIANG Zhi-yuan2,WANG Jin2,WANG Jian-bo2,YUAN De-cheng1,LIN Ping-wei2,MA Ai-wen3,QU Ji-feng2 |
1. Shenyang University of Chemical Technology,Shenyang,Liaoning 110142,China
2. National Institute of Metrology,Beijing 100029,China
3. Chinese Society for Measurement,Beijing 100029,China |
|
|
Abstract A microfabricated rubidium (Rb) atomic vapor cell is fabricated through micro-electro-mechanical system (MEMS) fabrication technology, which is applied to saturated absorption spectra and laser frequency stabilization. To achieve the three cavities glass-silicon-glass ‘sandwich’ structure, deep reactive ion etching and anodic bonding processes are adopted. Saturated absorption spectra frequency stabilization system based on Rb MEMS atomic vapor cell is built with an external cavity semiconductor laser with at 780nm. The MEMS vapor cell is heated and temperature controlled, and the saturated absorption spectra at different temperatures and optical powers are analysed. The experiment adopts the beat frequency method by two lasers after the laser frequency is locked through lock-in amplifier to evaluate the performance of the system. Experimental result shows that frequency stability of 1s and 100s integration time is 2.7×10-11 and 6.3×10-12.
|
Received: 03 January 2023
Published: 22 August 2023
|
|
|
|
|
[6] |
李新坤, 蔡玉珍, 郑建朋, 等. 碱金属原子气室研究进展 [J]. 导航与控制, 2020, 19(1): 125-132.
|
[1] |
贡昊, 王宇, 白金海, 等. 半导体激光器稳频综述[J]. 计测技术, 2019, 39(3): 1-7.
|
|
Gong H, Wang Y, Bai J H, et al. Review of Semiconductor Laser Frequency stabilization[J]. Metrology & Measurement Technology, 2019, 39(3): 1-7.
|
[3] |
Wei C H, Yan S H. Simple and robust method for rapid cooling of Rb-87 to quantum degeneracy[J]. Chinese Physics B, 2020, 29(6): 1-12.
|
|
Kang S B, Zhao F, Wang F, et al. Design of Miniaturized Physics Package for Rubidium Atomic Frequency Standards[J]. Acta Metrologica Sinica, 2012, 33(1): 73-76.
|
[8] |
李云超, 胡旭文, 刘召军, 等. 芯片原子钟原子气室的研究进展[J]. 激光与光电子学进展, 2018, 55(6): 29-40.
|
|
Li Y C, Hu X W, Liu Z J, et al. Research Progress of Atom Vapor Cell for Chip-Scale Atomic Clock[J]. Laser & Optoelectronics Progress, 2018, 55(6): 29-40.
|
[12] |
王逸群, 姜春宇, 付思齐, 等. 一种晶圆级芯片尺寸原子蒸汽腔封装方法: 201310518366[P]. 2016-04-27.
|
[14] |
Knappe S, Shah V, Scheindt P, et al. A microfabricated atomic clock[J]. Applied Physics Letters, 2004, 85(9): 1460-1462.
|
|
Li X K, Cai Y Z, Zheng J P, et al. Research Progress on the Alkali Metal Atomic Vapor Cell [J]. Navigation and Control, 2020, 19(1):125-132.
|
[10] |
Eklund E J, Shkel A M, Knappe S, et al. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors & Actuators A Physical, 2008, 143(1): 175-180.
|
[15] |
Sosa K, Oreggioni J, Failache H. Miniaturized saturated absorption spectrometer[J]. Review of Scientific Instrument, 2020, 91(8): 565-568.
|
[17] |
Knapkiewicz P, Cichy B, Posadowski W, et al. Anodic Bonding of Glass-to-Glass through Magnetron Spattered Nanometric Silicon Layer[J]. Procedia Engineering, 2011, 25: 1629-1632.
|
[18] |
Li S, Xu J, Zhang Z, et al. A microfabricated ~(87)Rb vapor cell with dual-chamber for chipscale atomic clock[J]. Infrared and Laser Engineering, 2014, 43(5): 1463-1468.
|
|
Yao J Q, Zhang Y, Hou F Y, et al. Temperature dependence of Rb D2 line in saturation spetroscopy[J]. Journal of Atomic and Molecular Physics, 2008, 25(5): 1057-1062.
|
|
Li C J, Su D W, Wu S Q, et al. The Diffraction Correction for Interferometric Absolute Gravimeters[J]. Acta Metrologica Sinica, 2017, 38(4): 420-423.
|
[5] |
Salomon C, Dalibard J, Phillips W D, et al. Laser cooling of cesium atoms below 3 microkelvins [J]. American Institute of Physics, 1991, 12(8): 73-88.
|
[13] |
Knappe S A, Robinson H, Hollberg L W. Microfabricated saturated absorption laser spectrometer[J]. Optics Express, 2007, 15(10): 6293-6293.
|
[2] |
Macadam K B, Steinbach A, Wieman C. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb[J]. American Journal of Physics, 1992, 60(12): 1098-1111.
|
[4] |
康松柏, 赵峰, 王芳, 等. 铷原子频标物理系统小型化设计[J]. 计量学报, 2012, 33(1):73-76.
|
[9] |
Kitching J, Knappe S, Hollberg L. Miniature vapor-cell atomic-frequency references[J]. Applied Physics Letters, 2002, 81(3): 553-555.
|
[11] |
Wei W, Shang J, Kuai W, et al. Fabrication of wafer-level spherical Rb vapor cells for miniaturized atomic clocks by a chemical foaming process[C] //Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), Guilin, China, 2012.
|
[19] |
姚景芹, 张尧, 侯飞雁, 等. 温度对铷原子D2线饱和吸收光谱的影响[J]. 原子与分子物理学报, 2008, 25(5): 1057-1062.
|
[20] |
李春剑, 粟多武, 吴书清, 等.光干涉绝对重力仪衍射修正[J]. 计量学报, 2017, 38(4): 420-423.
|
[7] |
Seltzer S J, Michalak D J, Donaldson M H, et al. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques [J]. Journal of Chemical Physics, 2010, 133(14): 105-116.
|
[16] |
Hasegawa M, Chutani R K, Gorecki C, et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks[J]. Sensors & Actuators A Physical, 2011, 167(2): 594-601.
|
|
|
|