|
|
Rapid Screening Method of High Moisture Content Contraband Based on ECT and Deep Learning |
HE Yong-bo,ZHANG Shu-hao |
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China |
|
|
Abstract In order to realize the non-invasive and rapid screening of high moisture content contraband by the customs, a detection method combining electrical capacitance tomography (ECT) technology and deep learning is proposed, and the feasibility study is carried out in the simulation environment. Firstly, the ECT sensor suitable for installation on the conveyor is designed, and different package models containing normal objects and contraband with high moisture content are constructed; Then, the capacitance signal data of different package models are obtained by capacitance sensor, and the two-dimensional and three-dimensional image reconstruction are carried out; Finally, in order to make up for the high error rate of manually observed package reconstruction image, a one-dimensional convolutional neural network (1D-CNN) model for adaptive extraction of capacitance signal features is constructed to predict and classify the package model. The experimental results show that the detection accuracy of the proposed method can reach over 98%, and the detection time of a single model is only 10-3 seconds, which can achieve rapid screening of high moisture content prohibited substances.
|
Received: 17 May 2022
Published: 22 August 2023
|
|
|
|
|
[1] |
王佳翔. 天津海关安全监管问题研究[D]. 秦皇岛: 燕山大学, 2020.
|
[9] |
季厌庸, 刘亚楠, 邓晨肖, 等. 基于ECT的航空复合材料缺陷检测研究[J]. 计量学报, 2019, 40(6): 952-957.
|
[10] |
张立峰, 戴力. 基于鲁棒正则化极限学习机的电容层析成像图像重建[J]. 计量学报, 2022, 43(8): 1044-1049.
|
[15] |
张友康, 苏志刚, 张海刚, 等. X光安检图像多尺度违禁品检测[J]. 信号处理, 2020, 36(7): 1096-1106.
|
[16] |
Hu X, Yang W. Planar Capacitive Sensors-Designs and Applications[J]. Sensor Review, 2010, 30(1): 24-39.
|
|
Liang T F, Zhang N F, Zhang Y X, et al. Summary of research progress on application of prohibited item detection in X-ray images[J]. Computer Engineering and Applications, 2021, 57(16): 74-82.
|
|
Jiang L H, Wang W S, Tong H X, et al. Research progress of terahertz imaging in the field of human security[J]. Journal of University of Shanghai for Science and Technology, 2019, 41(1): 46-51.
|
[19] |
崔自强, 王化祥. 提高电容层析成像系统实时性研究[J]. 仪器仪表学报, 2010, 31(9): 1939-1945.
|
[3] |
蒋林华, 王尉苏, 童慧鑫, 等. 太赫兹成像技术在人体安检领域的研究进展[J]. 上海理工大学学报, 2019, 41(1): 46-51.
|
[4] |
Perot B, Carasco C, Bernard S, et al. Development of the EURITRACK tagged neutron inspection system[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 261(1-2): 295-298.
|
[6] |
Ye Z, Robert B, Soleimani M. Planar Array 3D Electrical Capacitance Tomography[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2013, 55(12): 675-680.
|
|
Ma M, Wang T. Research on Monitoring Method of Aeroengine Lubricating Oil Based on CNN-MSLSTM[J]. Acta Metrologica Sinica, 2021, 42(2): 232-238.
|
|
Ji Y Y, Liu Y N, Deng C X, et al. Research on the Testing of Adhesive Defects of Aeronautical Composites Based on ECT[J]. Acta Metrologica Sinica, 2019, 40(6): 952-957.
|
|
Zhang L F, Dai L. Image Reconstruction Based on Robust Regularized Extreme Learning Machine for Electrical Capacitance Tomography[J]. Acta Metrologica Sinica, 2022, 43(8): 1044-1049.
|
|
Zhang S H, Wang H L, Chen Y X, et al. An Object Detection Method Based on Deep Learning Using Feature Map Weighted Fusion[J]. Acta Metrologica Sinica, 2020, 41(11): 1344-1351.
|
[2] |
梁添汾, 张南峰, 张艳喜, 等. 违禁品X光图像检测技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(16): 74-82.
|
[8] |
Wei K, Qiu C H, Primrode K. Super-sensing Technology: Industrial Applications and Future Challenges of Electrical Tomography[J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2016, 374(2070): 20150328.
|
|
Qu J L, Yu L, Yuan T, et al. Adaptive Fault Diagnosis Algorithm for Rolling Bearings Based on One-dimensional Convolutional Neural Network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143.
|
[14] |
Steitz J O M, Saeedan F, Roth S. Multi-view x-ray r-cnn[C]// German Conference on Pattern Recognition. Springer, Cham,Switzerland, 2018: 153-168.
|
|
Zhang Y K, Su Z G, Zhang H G, et al. Multi-scale Prohibited Item Detection in X-ray Security Image[J]. Journal of Signal Processing, 2020, 36(7): 1096-1106.
|
[17] |
Feng H, Tang J, Cavalieri R P. Dielectric Properties of Dehydrated App Les as Affected by Moisture and Temperature[J]. Transactions of the ASAE, 2002, 45 (1): 129-135.
|
[5] |
费鹏, 方维海, 温鑫, 等. 用于人员安检的主动毫米波成像技术现状与展望[J]. 微波学报, 2015, 31(2): 91-96.
|
[7] |
马敏, 王涛. 基于CNN-MSLSTM的航空发动机滑油监测方法研究[J]. 计量学报, 2021, 42(2): 232-238.
|
[11] |
Gu J, Wang Z, Kuen J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 2018, 77(4): 354-377.
|
[13] |
曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
|
[18] |
金列俊, 詹建明, 陈俊华, 等. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
|
|
Cui Z Q, Wang H X. Improvements on Real-time Performance of Electrical Capacitance Tomography[J]. Chinese Journal of Scientific Instrument, 2010, 31(9): 1939-1945.
|
|
Fei P, Fang W H, Wen X, et al. State of the Art and Future Prospect of the Active Millimeter Wave Imaging Technique for personnel screening[J]. Journal of Microwaves, 2015, 31(2): 91-96.
|
[12] |
张世辉, 王红蕾, 陈宇翔, 等. 基于深度学习利用特征图加权融合的目标检测方法[J]. 计量学报, 2020, 41(11): 1344-1351.
|
|
Jin L J, Zhan J M, Chen J H, et al. Drill Pipe Fault Diagnosis Method Based on One-dimensional Convolutional Neural Network[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(3): 467-474.
|
|
|
|