|
|
Entropic Stochastic Resonance Driven by Square-wave Signal and Asymmetric Dichotomous Noise |
ZHAO Xin1,OU Jian2 |
1.Computer Science Department of Mianyang Vocational and Technical College, Mianyang, Sichuan 621000, China;
2.Information Engineering Dept of Mianyang Vocational and Technical College, Mianyang, Sichuan 621000, China |
|
|
Abstract The entropic stochastic resonance (ESR) in a confined system driven by asymmetric dichotomous noise, white noise, and a square-wave signal is investigated. Under the adiabatic approximation condition, the expression of the output signal-to-noise ratio (SNR) is obtained. It is shown that the SNR is a non-monotonic function of the strength and asymmetry of the dichotomous noise, of the intensity of the white noise, and the amplitude of the square-wave signal. Moreover, the SNR varies non-monotonously with the increase of the parameters of the confined structure. The influence of the correlation rate of the dichotomous noise on the SNR is also discussed.
|
|
|
|
|
[1]Benzi R, Suteta A, Vulpiani A. The mechanism of stochastic resonance[J].J Phys A: Mathematical and General, 1981, 14 (11): 453-457.
[2]Goychuk I, Hanggi P. Non-MarovianStochasticResonance[J].Phys Rev Lett,2003, 91: 070601/1-4.
[3]Hille B. Ion Channels of Excitable Membranes [M]. Sunderland: Sinauer Associates, 2001.
[4]Barrer R M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves[M].London; New York: Academic Press,1978.
[5]Liu L, Li P, Asher A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel[M]. London: Nature, 1999,141-144.
[6]Berezhkovskii A M, Bezrukov S M. Optimizing transport of metabolites through large channels: Molecular sieves with and without binding[J]. Biophys J, 2005,88(3): 17-19.
[7]Burada P S, Schmid G, Regura D, et al. Entropic Stochastic Resonance[J]. Phys Rev Lett,2008, 101(7):130602/1-4.
[8]Burada P S, Schmid G, Regura D, et al. Entropic stochastic resonance: the constructive role of the unevenness[J]. Eur Phys J B, 2009, 69(2): 11-18.
[9]Burada P S, Schmid G, Regura D, et al. Double entropic stochastic resonance[J]. Europhys Letters,2009,87(8): 1-6.
[10]Zhao L, Luo X Q, Wu D, et al. Entropic Stochastic Resonance Driven by Colored Noise[J]. Chin Phys Lett,2010, 27(3): 1-4.
[11]Zeng C H, Wang H, Wang H T. Entropic noise induced stability and double entropic stochastic resonance induced by correlated noises[J]. Chinese Phys B,2011, 20 (5): 1-7.
[12]Zeng C H, Wang H, Gong A L. Entropic noises-induced resonance in a geometrically confined system[J]. Journal of Statistical Mechanics: Theory and Experiment,2012,7(1):1-18.
[13]Zeng C H, Wang H. Entropic bona fide stochastic resonance with periodic modulation[J]. Eur Phys J B,2012, 85(4): 1-6.
[14]Gitterman M. Harmonic oscillator with multiplicative noise: Nonmonotonic dependence on the strength and the rate of dichotomous noise[J]. Phys Rev E,2003, 67(5): 1-4.
[15]Hector C, Fernando M, Enrique T. Stochastic resonance in a linear system: An exact solution[J]. Phys Rev E,2006, 74(9): 1-4.
[16]Thompson A R, Moran J M, Swenson G W Jr. Interferometry and Synthesis in Radio Astronomy[M]. New York: Wiley, 1986.
[17]McNamara B, Wiesenfeld K. Theory of stochastic resonance[J]. Phys Rev A,1989, 39(9): 4854-4869.
[18]McNamara B, Wiesenfeld K, Roy R. Observation of stochastic resonance in a ring laser[J]. Phys Rev Lett,1988, 60(7): 2626-2629.
[19]Ginzburg S L, Pustovoit M A. Stochastic resonance in two-state model of membrane channel with comparable opening and closing rates[J]. Phys Rev E,2002, 66(8): 1-9.
[20]Feng G, Zhou Y R, Zhang Y. Stochastic resonance in a time-delayed bistable system subject to dichotomous noise and white noise[J]. Chin J Phys,2010, 48(7): 294-303.
[21]Feng G, Zhou Y R, Zhang Y. Stochastic resonance in a time-delayed bistable system subject to multiplicative and additive noise[J]. Chin Phys B,2010, 19(7): 86-90. |
|
|
|