|
|
Design of a Hydrophone Sensitivity Calibration System in Variable Temperature Environment |
CHEN Si-qiang1,LI Xue-jian2,WANG Yue-bing1,ZHAO Peng1 |
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Nanjing Metrology Research Center, PipeChina West East Gas Pipeline Company, Nanjing, Jiangsu 210046, China |
|
|
Abstract Aiming at the lack of a method for calibrating the sensitivity of hydrophones under variable temperature conditions, a temperature-variable hydrophone sensitivity calibration system based on the sound tube of the moving coil transducer was designed. A model was established to analyze the sound pressure distribution in the sound tube, and the compensation amount for the sensitivity calibration result after changing temperature was calculated; Comsol was used to simulate the influence of different sound tube thicknesses on the sound field, and the non-uniform vibration of the bottom surface and the effect of different sizes of hydrophones on the calibration were analyzed. Influence of the results, the appropriate acoustic tube size and measurement method were determined. The hydrophones of different sizes were calibrated under normal and variable temperature conditions and the calibration results were compared with the standard values. The results show that the deviation of the calibration result of this system from the standard value is less than 0.5dB at normal temperature, and the deviation of the measurement result from the standard value under the condition of variable temperature is less than 0.6dB, and the expanded uncertainty of the whole system is about 1.0dB.
|
Received: 27 December 2021
Published: 21 February 2023
|
|
|
|
|
[1] |
刘伯胜, 雷家煜. 水声学原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2010.
|
[2] |
陈毅, 贾广慧, 费腾, 等. 5 Hz~10kHz 频率范围矢量水听器校准国际主导比对 [J]. 计量学报, 2020, 41 (10): 1279-1283.
|
[4] |
袁文俊, 陈毅, 张晓岚, 等. 0.01~1 Hz 水声声压标准装置的研究 [J]. 计量学报, 2004, 25 (3): 270-274.
|
|
Chen Y, Jia G H, Fei T, et al. The Pilot Comparison Calibration of Vector Receivers in the Frequency Range 5 Hz to 10kHz [J]. Acta Metrologica Sinica, 2020, 41 (10): 1279-1283.
|
[3] |
李水, 沈建新, 唐海清, 等. 水声材料低频声性能的驻波管测量 [J]. 计量学报, 2003, 24 (3): 221-224.
|
[5] |
陈毅, 平自红, Isaev A E, 等. 250 Hz~8kHz 频率范围水听器自由场校准补充比对 [J]. 计量学报, 2016, 37 (1): 84-89.
|
[6] |
王月兵, 黄勇军. 使用激光测振技术校准水听器灵敏度 [J]. 声学学报, 2001, 38 (1): 29-33.
|
|
Wang Y B, Huang Y J. Calibration of hydrophones using optieal lteehnique [J]. Acta Acustica, 2001, 38 (1): 29-33.
|
[7] |
方玲. 标准水听器温度稳定性实验研究 [J]. 声学与电子工程, 2016, 31 (3): 27-28.
|
|
Fang L. Experimental Research on Temperature Stability of Standard Hydrophone [J]. Acoustics and Electronics Engineering, 2016, 31 (3): 27-28.
|
[8] |
佟昊阳, 易燕, 李水, 等. 变温变压环境中大面积水听器灵敏度低频校准方法 [J]. 计量学报, 2021, 42 (9): 1187-1192.
|
[9] |
荣左超.次声活塞发声器机理及相关技术研究 [D]. 杭州: 浙江大学, 2013.
|
[11] |
牛放. 高精度超声波流量计的流场分析及温度补偿方法研究 [D]. 徐州: 中国矿业大学, 2020.
|
[13] |
陈凝,赵鹏,王月兵, 等. 高强度聚焦超声作用下体模组织温度上升研究[J]. 计量学报, 2021, 42 (12): 1636-1643.
|
|
Chen Y, Ping Z H, Isaev A E, et al. Supplementary Comparison of Free-field Hydrophone Calibrations in the Frequency Range 250 Hz to 8kHz [J]. Acta Metrologica Sinica, 2016, 37 (1): 84-89.
|
[12] |
魏丰君, 温志梅, 王雅静, 等. 基于回归分析的水密度与温度函数研究 [J]. 盐城工学院学报 (自然科学版), 2021, 34 (3): 75-78.
|
|
Chen N, Zhao P. Wang Y B, et al. The Temperature Rise of Tissue-Mimicking Phantom under the Action of High Intensity Focused Ultrasound[J]. Acta Metrologica Sinica, 2021, 42 (12): 1636-1643.
|
|
He S P, Tang W L, Liu T, et al. The influence of the wall thickness and elasticity of the underwater acoustic tube on the internal sound field [J]. Journal of Ship Mechanics, 2003, 7 (5): 97-103.
|
[16] |
于龙晶,王月兵,唐佳玄, 等. 非刚性管中换能器灵敏度的测量方法研究[J]. 计量学报, 2022, 43 (9): 1192-1199.
|
[17] |
Rubinow S I. Wave Propagation in a Fluid-Filled Tube [J]. Journal of the Acoustical Society of America, 2005, 50 (1B): 198-223.
|
[18] |
JJF 1059.1—2012 测量不确定度评定与表示 [S]. 2012.
|
|
Yuan W J, Chen Y, Zhang X L, et al. The Research of Underwater Acoustics Pressure Standard in the Frequency Band of 0.01 to 1 Hz [J]. Acta Metrologica Sinica, 2004, 25 (3): 270-274.
|
[10] |
柯导明, 陈军宁. 数学物理方法 [M]. 北京: 机械工业出版社, 2008.
|
|
Yu L J, Wang Y B, Tang J X, et al. Study on the Measurement Method of Transducer Sensitivity in Non-rigid Tube[J]. Acta Metrologica Sinica, 2022, 43 (9): 1192-1199.
|
|
Li S, Shen J X, Tang H Q, et al. Measurement for Low-frequency Properties of Underwater Acoustic Materials in a Standing Wave Tube [J]. Acta Metrologica Sinica, 2003, 24 (3): 221-224.
|
|
Tong H Y, Yi Y, Li S, et al. Low-frequency Calibration of Sensitivity of Large-planar Hydrophones in Dynamic Environment of Pressure and Temperature [J]. Acta Metrologica Sinica, 2021, 42 (9): 1187-1192.
|
[15] |
芦雪松. 弹性充液管道声传输特性研究 [D]. 哈尔滨:哈尔滨工程大学, 2015.
|
|
Wei F J, Wen Z M, Wang Y J, et al. Research on Water Density and Temperature Function Based on Regression Analysis [J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2021, 34 (3): 75-78.
|
[14] |
何世平, 汤渭霖, 刘涛, 等. 水声声管的壁厚和弹性对内部声场的影响 [J]. 船舶力学, 2003, 7 (5): 97-103.
|
[19] |
陈毅, 赵涵, 袁文俊. 水下电声参数测量 [M]. 北京: 兵器工业出版社, 2017.
|
|
|
|