|
|
Prediction of SO2 Concentration at Desulfurization Outlet Based on MIC and MPA-KELM |
YAN Hao-si,ZHAO Wen-jie |
School of Control and Computer Engineering, North China Electric Power University, Baoding, Hebei 071003, China |
|
|
Abstract The establishment of SO2 concentration prediction model at desulfurization outlet is the basis for realizing the economic operation of desulfurization system. Aiming at this problem, a SO2 concentration prediction model at desulfurization outlet based on variable selection of maximum information coefficient (MIC) and marine predation algorithm (MPA) optimized nuclear limit learning machine (KELM) was proposed. Firstly, the mechanism analysis method was used to screen the variables affecting the SO2 concentration at the outlet, and the expression method of comprehensive flow of circulating slurry was proposed to describe the influence characteristics of slurry circulating pump combination. On this basis the input variables of the model were determined by the variable selection algorithm based on the maximum information coefficient. Then, MPA was used to optimize the regularity coefficient C and nuclear parameter S of KELM, and the outlet SO2 concentration prediction model of MPA-KELM was established. Finally, the simulation experiment was carried out by using the operation data of the power plant. The results show that after variable selection, the mean square error and average absolute percentage error of MPA-KELM model are 1.23666mg/m3 and 4.9876% respectively. The prediction accuracy is high, which can provide technical support for the on-site optimal control of SO2 in the desulfurization system.
|
Received: 03 November 2021
Published: 21 February 2023
|
|
|
|
|
[11] |
李军, 李大超.基于优化核极限学习机的风电功率时间序列预测[J].物理学报,2016,65(13):39-48.
|
[5] |
洪文鹏, 陈重. 基于自适应粒子群优化BP神经网络的氨法烟气脱硫效率预测 [J]. 动力工程学报, 2013, 33(4): 290-295.
|
[6] |
马双忱, 林宸雨, 周权, 等. 基于深度神经网络的脱硫系统预测模型及应用 [J]. 化工进展, 2021, 40(3): 1689-1698.
|
[17] |
陈颖,崔行宁,肖春艳,等. 复杂水质环境下基于PSO-ELM的BOD快速检测[J]. 计量学报, 2021, 42(1): 105-110.
|
[2] |
靳会宁. 基于偏最小二乘法的石灰石-石膏湿法脱硫效率预测模型 [J]. 资源节约与环保, 2016(3): 15-16.
|
|
Zhu J, Wu Z Y, Ye S C, et al. Study on limestone gypsum wet spray desulfurization model [J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29 (1): 220-225.
|
|
Ma S C, Liu C Y, Zhou Q, et al. Prediction model of desulfurization system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698.
|
|
Li J H, Liu S Q, Dong S, et al. Prediction of desulfurization efficiency by generalized regression neural network [J]. Techniques of Automation and Applications, 2018, 37(10): 1-3.
|
[12] |
郑茗友, 王伟, 赵文杰, 等. 基于PSO-Lasso算法的电站湿法脱硫出口SO2浓度预测 [J]. 华北电力大学学报(自然科学版), 2022, 49(1): 112-117.
|
[13] |
张然然. A电厂SO2排放软测量研究 [D]. 济南: 齐鲁工业大学, 2019.
|
[20] |
侯晓丽. 基于IHMFE和MPA-KELM的滚动轴承故障诊断方法研究 [D]. 太原: 中北大学, 2021.
|
|
Hong W P, Chen Z. Prediction of ammonia flue gas desulfurization efficiency based on adaptive particle swarm optimization BP neural network [J]. Journal of Chinese Society of Power Engineering, 2013, 33 (4): 290-2954.
|
|
Jin X Z, Li J. Prediction of SO2 Concentration Based on Mutual Information PSO-LSSVM [J]. Acta Metrologica Sinica, 2021, 42 (5): 675-680.
|
|
Han H Q, Wu S, Hou B W. Short term water demand prediction model using nuclear limit learning machine [J]. Journal of Harbin Institute of Technology, 2022, 54(2): 17-24.
|
|
Chen Y, Cui X N, Xiao C Y, et al. Rapid Detection of BOD Based on PSO-ELM in Complex Water Quality Environment
|
[18] |
Shamshirband S, Monammadi K, Chen H L, et al. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for city of Bandar Abass, Iran [J]. Journal of Atmospheric & Solar Terrestrial Physics, 2015, 134(105): 109.
|
[1] |
葛志辉. 基于机器学习的湿法脱硫系统优化技术研究 [D]. 杭州: 浙江大学, 2021.
|
[3] |
祝杰, 吴振元, 叶世超, 等. 石灰石-石膏湿法喷淋脱硫模型研究 [J]. 高校化学工程学报, 2015, 29(1): 220-225.
|
[4] |
马双忱, 周权, 曹建宗,等.湿法脱硫系统动态过程建模与仿真[J].化工学报,2020,71(8):3741-3751.
|
|
Ma S C, Zhou Q, Cao J Z, et al. Dynamic process modeling and Simulation of wet desulfurization system [J]. CIESC Journal, 2020, 71 (8): 3741-3751.
|
[7] |
李军红, 刘锁清, 董森, 等. 广义回归神经网络对脱硫效率的预测 [J]. 自动化技术与应用, 2018, 37(10): 1-3.
|
[8] |
金秀章, 李京. 基于互信息PSO-LSSVM的SO2浓度预测 [J]. 计量学报, 2021, 42(5): 675-680.
|
[9] |
Huang G B. An Insight into ExtremeLearning Machines: Random Neurons, Random Features and Kernels [J]. Cognitive Computation, 2014, 6(3) : 376-390.
|
[10] |
韩宏泉, 吴珊, 侯本伟. 采用核极限学习机的短期需水量预测模型 [J]. 哈尔滨工业大学学报, 2022, 54(2): 17-24.
|
|
Zheng M Y, Wang W, Zhao W J, et al. Prediction of SO2 concentration at wet desulfurization outlet of power station based on PSO lasso algorithm [J]. Journal of North China Electric Power University (Natural Science Edition), 2022, 49(1): 112-117.
|
[14] |
乔宗良. 石灰石/石膏湿法烟气脱硫系统优化技术研究 [D]. 南京: 东南大学, 2015.
|
[16] |
胡坚, 刘超. NTLBO算法优化ELM的SOC预测方法[J]. 计量学报, 2022, 43(1): 92-96.
|
|
Hu J, Liu C. The SOC Prediction Method of ELM Optimized by NTLBO Algorithm[J].Acta Metrologica Sinica, 2022, 43(1): 92-96.
|
[19] |
Faramarzi A, Heidarinejad M, Mirjalili S, et al. Marine Predators Algorithm: A Nature-inspired Metaheuristic[J].Expert Systems with Applications,2020,152:113377.
|
[21] |
Huang G B, Zhou H, Ding X, et al. Extreme Learning Machine for Regression and Multiclass Classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529.
|
|
Li J, Li D C. Wind power time series prediction based on optimized nuclear limit learning machine [J]. Acta Physica Sinica, 2016, 65 (13): 39-48.
|
[J] |
Acta Metrologica Sinica, 2021, 42(1): 105-110.
|
[15] |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets [J]. Science, 2011, 334(6062) : 1518-1524.
|
|
|
|