|
|
Review of Laser Frequency Stabilization Technology in Atmospheric Detection Lidar |
HUANG Cong1,2,ZHANG Sheng-zi2,WANG Jiang2,CHANG Jian-hua1 |
1. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology,Nanjing, Jiangsu 210044, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Atmospheric detection lidar is widely used in research fields such as atmospheric detection, environmental monitoring, and national defense security due to its high temporal and spatial resolution and high detection accuracy. According to the measurement principle of atmospheric detection lidar, the frequency stability of its light source will have a great influence on the measurement and inversion of atmospheric parameters. Therefore, it is particularly important to stabilize the frequency of the light source. The four laser frequency stabilization technologies and characteristics currently used in atmospheric detection lidar are reviewed. The application research status of these frequency stabilization technologies in atmospheric detection lidar is introduced, which provides reference for the future development of high-precision atmospheric detection lidar.
|
Received: 19 November 2021
Published: 21 February 2023
|
|
|
|
|
[7] |
马昕, 龚威, 马盈盈, 等. 基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究[J]. 物理学报, 2015,64(15):154215.
|
[26] |
何宁, 谢朝玲. 光束特性对声光偏转相干光探测效率的影响 [J]. 光学学报, 2013, (2): 61-66.
|
[27] |
季园媛. 光纤多普勒拍频信号高速采集系统设计[D]. 西安:西安工业大学, 2016.
|
[32] |
张胤, 王青. 自动稳频半导体激光器研究 [J].中国激光, 2014, 41 (6): 18-22.
|
[44] |
杜娟,孙延光. 1.57μm半导体激光器长期频率稳定性研究 [J]. 光学技术, 2021, 47 (3): 299-304.
|
[2] |
Wang K, Gao C, Lin Z, et al. 1645nm Coherent Doppler wind lidar with a single-frequency Er: YAG laser [J]. Optics Express, 2020, 28 (10): 14694-14704.
|
|
Tian X M, Liu D, Xu J W, et al. Review of Lidar Technology for Atmosphere Monitoring [J]. Journal of Atmospheric and Environmental Optics, 2018, 13 (5): 321-341.
|
|
Hu H M, Wang C, Zhang J T. International Research Overview of Inversion Approach of Carbon Emission Measurement in Urban Area [J]. Acta Metrologica Sinica, 2017, 38 (1): 7-12.
|
[24] |
吴松华. 高稳定性高光谱分辨率激光测风系统关键技术[D]. 青岛:中国海洋大学, 2004.
|
[35] |
刘东, 杨甬英, 周雨迪, 等. 大气遥感高光谱分辨率激光雷达研究进展 [J]. 红外与激光工程, 2015, 44 (9): 2535-2546.
|
[42] |
刘豪, 舒嵘, 洪光烈, 等. 连续波差分吸收激光雷达测量大气CO2 [J]. 物理学报, 2014, 63 (10): 209-214.
|
[49] |
郭文杰, 闫召爱, 胡雄, 等. 532nm测风激光雷达长时间稳频系统 [J]. 红外与激光工程, 2016, 45 (S1): 94-98.
|
[4] |
孔德明,段呈新,巴特·古森斯,等. 基于车载16线激光雷达的障碍物检测方法[J]. 计量学报, 2021, 42 (7): 846-852.
|
|
Zhou X L, Sun D S, Zhong Z Q, et al. Development of Doppler Wind Lidar [J]. Journal of Atmospheric and Environmental Optics, 2007,2 (3): 161-168.
|
[8] |
Gong W, Ma X, Han G, et al. Method for wavelength stabilization of pulsed difference frequency laser at 1572nm for CO2 detection lidar [J]. Optics Express, 2015, 23 (5): 6151-6170.
|
[9] |
Lux O, Wernham D, Bravetti P, et al. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus [J]. Optics Letters, 2020, 45 (6): 1443-1446.
|
|
Hu S X, Chen Y F, Liu Q W, et al. Differential Absorption Lidar System for Background Atmospheric SO2 and NO2 Measurements [J]. Chinese Journal of Lasers, 2018, 45 (9): 119-124.
|
|
Liu X M, Liu Q Y, Zhang L. Recent Progress on Atmospheric Greenhouse gases LIDAR and Its Calibration [J]. Acta Metrologica Sinica, 2018, 39 (1): 39-42.
|
|
Ma L Y,Ma R M,Zhu X Y,et al. Carbon Dioxide Concentration Measurement of Fixed SourceBased on Herriott Absorption Cell[J]. Acta Metrologica Sinica, 2022, 43(3): 416-419.
|
|
Ma R M, Lin H, Zhang L, et al. Measurement of Carbon Dioxide Concentration Based on Multi-pass Absorption Technology [J]. Acta Metrologica Sinica, 2020, 41 (4): 425-429.
|
[15] |
潘金明, 林鸿, 冯晓娟, 等. CO的第二泛频 (3←0)跃迁 谱线线形强度测量研究 [J]. 计量学报, 2020, 41 (12): 1565-1569.
|
|
Yuan D D, Hu S L, Liu H H, et al. Research of Laser Frequency Stabilization [J]. Laser & Optoelectronics Progress, 2011, 48 (8): 22-28.
|
[20] |
韩琳, 林弋戈, 杨晶, 等. 基于光谱烧孔效应的激光稳频技术研究与进展 [J]. 激光与光电子学进展, 2019, 56 (11): 28-38.
|
[28] |
张超超,王建波,殷聪,等. 基于光学锁相环的高稳定度激光稳频方法研究[J].计量学报, 2022, 43(9): 1154-1160.
|
|
Zhang Y, Wang Q. Research of Automatic Frequency Stability Diode Laser [J]. Chinese Journal of Lasers, 2014, 41 (6): 18-22.
|
[40] |
王骐, 陆威, 高明, 等. 激光脉冲偏频锁定技术的发展 [J].激光技术, 2002, (4): 255-257+261.
|
[3] |
田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述 [J]. 大气与环境光学学报, 2018, 13 (5): 321-341.
|
[4] |
胡鹤鸣, 王池, 张金涛. 城市区域碳排放测量反演研究国际进展 [J]. 计量学报, 2017, 38 (1): 7-12.
|
|
Ma X, Gong W, Ma Y Y, et al. Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm [J]. Acta Physica Sinica, 2015, 64 (15): 235-245.
|
[11] |
胡顺星, 陈亚峰, 刘秋武, 等. 差分吸收激光雷达系统探测背景大气SO2和NO2 [J]. 中国激光, 2018, 45 (9): 119-124.
|
[14] |
马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究 [J]. 计量学报, 2020, 41 (4): 425-429.
|
[16] |
苑丹丹, 胡姝玲, 刘宏海, 等. 激光器稳频技术研究 [J]. 激光与光电子学进展, 2011, 48 (8): 22-28.
|
|
Chen C S, Wang F, Liu S H, et al. Review of frequency stabilization technology of semiconductor laser [J]. Chinese Journal of Quantum Electronics, 2010, 27 (5): 513-521.
|
[19] |
卞正兰, 黄崇德, 高敏, 等. PDH激光稳频控制技术研究 [J]. 中国激光, 2012, 39 (3): 7-11.
|
[21] |
Shen F H, Ji J, Xie C B, et al. High-spectral-resolution Mie Doppler lidar based on a two-stage Fabry-Perot etalon for tropospheric wind and aerosol accurate measurement [J]. Applied Optics, 2019, 58 (9): 2216-2225.
|
[22] |
Shen F H, Wang B, Shi W, et al. Design and performance simulation of 532nm Rayleigh-Mie Doppler lidar system for 5~50km wind measurement [J]. Optics Communications, 2018, 412: 7-13.
|
|
He N, Xie C L. Effect of Beam Characteristic on Detection Efficiency for the Coherent Optical Detection System Based on Acousto-Optic Deflection [J]. Acta Optica Sinica, 2013, (2): 61-66.
|
[29] |
马路遥,林俊,张亮,等. 温室气体浓度监测的光腔衰荡光谱研究进展[J].计量学报,2022,43(2):274-280.
|
[31] |
陶天炯. 激光稳频锁相研究[D]. 杭州:浙江大学, 2010.
|
[39] |
孙旭涛, 陈卫标. 基于法珀标准具的激光稳频方法理论研究 [J].光子学报, 2007, (12): 2219-2222.
|
|
Du J, Sun Y G. Long term frequency stability study of 1.57um semiconductor laser [J]. Optical Technique, 2021, 47 (3): 299-304.
|
[1] |
Liu Z, Barlow J F, Chan P W, et al. A Review of Progress and Applications of Pulsed Doppler Wind LiDARs [J]. Remote Sensing, 2019, 11 (21): 2522.
|
|
Kong D M, Duan C X, Ba G, et al. Obstacle Detection Method Based on Vehicle 16-line Lidar[J]. Acta Metrologica Sinica, 2021, 42 (7): 846-852.
|
[6] |
Han F, Liu H, Sun D, et al. An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar [J]. Current Optics and Photonics, 2020, 4 (1): 69-80.
|
[10] |
Christian L, Oliver L, Oliver R, et al. Frequency and timing stability of an airborne injection-seeded Nd: YAG laser system for direct-detection wind lidar [J]. Applied Optics, 2017, 56 (32): 9057-9068.
|
[13] |
马路遥,马若梦,祝晓轶,等. 基于Herriott吸收池的固定源二氧化碳浓度测量研究[J]. 计量学报, 2022, 43(3): 416-419.
|
|
Pan J M, Lin H, Feng X J, et al. Investigation on the Line Intensity Measurement of the Second Overtone (3←0) Band of CO [J]. Acta Metrologica Sinica, 2020, 41 (12): 1565-1569.
|
[18] |
刘志强, 刘建丽, 翟泽辉. 激光稳频技术的研究及进展 [J]. 量子光学学报, 2018, 24 (2): 228-236.
|
|
Han L, Lin Y G, Yang J, et al. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect [J]. Laser & Optoelectronics Progress, 2019, 56 (11): 28-38.
|
[25] |
Schroeder T, Lemmerz C, Reitebuch O, et al. Frequency jitter and spectral width of an injection-seeded Q-switched Nd: YAG laser for a Doppler wind lidar [J]. Applied Physics B, 2007, 87 (3): 437-444.
|
|
Zhang C C,Wang J B,Yin C,et al. Research on High Stability Laser Frequency Stabilization Method Based on Optical Phase-Locked Loop[J]. Acta Metrologica Sinica, 2022, 43(9): 1154-1160.
|
|
Ma L Y,Lin J,Zhang L,et al. Review on the Cavity Ring-down Spectroscopy for Greenhouse Gas Monitoring[J]. Acta Metrologica Sinica, 2022, 43(2): 274-280.
|
[30] |
王青, 赖舜男, 齐向晖, 等. 基于饱和吸收谱的激光稳频实验系统设计 [J].实验技术与管理, 2021, 38 (12): 23-28.
|
[33] |
Bjorklund G C, MD Levenson, Ortiz W L. Frequency modulation (FM) spectroscopy [J]. Applied Physics B, 1983, 32 (3): 145-152.
|
[5] |
周小林, 孙东松, 钟志庆, 等. 多普勒测风激光雷达研究进展 [J]. 大气与环境光学学报, 2007, 2(3): 161-168.
|
[12] |
刘晓萌, 刘勤勇, 张亮. 大气温室气体探测激光雷达及其标定技术研究进展 [J]. 计量学报, 2018, 39 (1): 39-42.
|
[17] |
陈长水, 王芳, 刘颂豪, 等. 半导体激光器稳频技术综述 [J]. 量子电子学报, 2010, 27 (5): 513-521.
|
[23] |
Wang Z G, Ju Y L, Wu C T, et al. Diode-pumped injection-seeded Tm, Ho: GdVO4 laser [J]. Laser Physics Letters, 2010, 6 (2): 98-101.
|
[29] |
李超, 陈华才, 林弋戈, 等. 应用于边带调制PDH激光稳频的信号源设计 [J]. 计量学报, 2018, 39 (3): 401-404.
|
[34] |
Drever R, Hall J L, Kowalski F V, et al. Laser Phase and Frequency Stabilization Using an Optical Resonator [J]. Applied Physics B, 1983, 31 (2): 97-105.
|
|
Liu D, Yang Y Y, Zhou Y D, et al. High spectral resolution lidar for atmosphere remote sensing: a review [J]. Infrared and Laser Engineering, 2015, 44 (9): 2535-2546.
|
[37] |
Bjorklund G C, Whittaker E A. High Sensitivity Frequency Modulation Spectroscopy and the Path to Single Molecule Detection [J]. Journal of Physical Chemistry A, 2021, 125 (39): 8519-8528.
|
|
Wang Q, Lu W, Gao M, et al. Current development of optical pulse offset frequency locking techniques [J]. Laser Technology, 2002, (4): 255-257+261.
|
[41] |
Numata K, Chen J R, Wu S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1572nm for lidar measurements of atmospheric carbon dioxide [J]. Applied Optics, 2011, 50 (7): 1047.
|
|
Liu H, Shu R, Hong G L, et al. Continuous-wave modulation differential absorption lidar system for CO2 measurement [J]. Acta Physica Sinica, 2014, 63 (10): 209-214.
|
|
Hong G L, Liang X D, Liu H, et al. Detection of CO2 Average Concentration in Atmospheric Path by CW Modulated Differential Absorption Lidar [J]. Spectroscopy and Spectral Analysis, 2020, 40 (12): 3653-3658.
|
[46] |
Du J, Zhu Y, Li S, et al. Double-pulse 1.57μm integrated path differential absorption lidar ground validation for atmospheric carbon dioxide measurement [J]. Applied Optics, 2017, 56 (25): 7053-7058.
|
[47] |
Sun X T, Liu J Q, Zhou J, et al. Frequency stabilization of a single-frequency all-solid-state laser for Doppler wind lidar [J]. Chinese Optics Letters, 2008, ( 9): 679-680.
|
|
Liu Z Q, Liu J L, Zhai Z H. Research and Development of Laser Frequency Stabilization Technique [J]. Chinese Journal of Quantum Electronics, 2018, 24 (2): 228-236.
|
|
Bian Z L, Huang C D, Gao M, et al. Research on Control Technique for Pound-Drever-Hall Laser Frequency Stabilizing System [J]. Chinese Journal of Lasers, 2012, 39 (3): 7-11.
|
|
Wang Q, Lai S N, Qi X H, et al. Design of laser frequency stabilization experiment system based on saturated absorption spectroscopy [J]. Experimental Technology and Management, 2021, 38 (12): 23-28.
|
[38] |
Liu C, Yue Z, Xu Z, et al. Far Off-Resonance Laser Frequency Stabilization Technology [J]. Applied Sciences, 2020, 10 (9): 3255.
|
|
Sun X T, Chen W B. Theoretical Study on Laser Frequency Stabilization in Reference to Fabry-Perot Cavity [J]. Acta Optica Sinica, 2007, (12): 2219-2222.
|
[45] |
Du J, Sun Y G, Chen D J, et al. Frequency-stabilized laser system at 1572nm for space-borne CO2 detection LIDAR [J]. Chinese Optics Letters, 2017, 15 (3): 92-96.
|
|
Guo W J, Yan Z A, Hu X, et al. Long-term frequency stabilization system in 532nm wind lidar [J]. Infrared and Laser Engineering, 2016, 45 (S1): 94-98.
|
[51] |
王邦新, 李路, 沈法华, 等. 测风激光雷达F-P标准具温度特性及锁频技术研究 [J]. 红外与激光工程, 2021,50 (3): 1-7.
|
[52] |
李路, 庄鹏, 谢晨波, 等. 采用温控和碘吸收池技术的发射激光稳频技术 [J]. 红外与激光工程, 2021, 50 (3): 86-93.
|
[53] |
Matthey R, Schilt S, Werner D, et al. Diode laser frequency stabilisation for water-vapour differential absorption sensing [J]. Applied Physics B, 2006, 85 (2-3): 477-485.
|
|
Li C, Chen H C, Lin Y G, et al. Design of Signal Generator Applied on Sideband Modulation Pound-Drever-Hall Laser Frequency Stabilization [J]. Acta Metrologica Sinica, 2018, 39 (3): 401-404.
|
[36] |
Wojciech G, Jerzy Z. Stabilization of diode-laser frequency to atomic transitions [J]. Optica Applicata, 2004, 34 (4): 607-618.
|
[43] |
洪光烈, 梁新栋, 刘豪, 等. 连续波差分吸收激光雷达探测路径大气CO2平均浓度 [J]. 光谱学与光谱分析, 2020, 40 (12): 3653-3658.
|
[50] |
闫庆, 袁萌, 何甜甜, 等. 基于分子吸收的脉冲激光锁频方法研究 [J]. 光学学报, 2019, 39 (10): 326-334.
|
[48] |
Chen C Y, Wang Q, Huang S, et al. Single-frequency Q-switched Er: YAG laser with high frequency and energy stability via the Pound-Drever-Hall locking method [J]. Optics letters, 2020, 45 (13): 3745-3748.
|
|
Wang B X, Li L, Shen F H, et al. Research on temperature characteristics and frequency-locking technology of F-P etalon for wind lidar [J]. Infrared and Laser Engineering, 2021, 1-7.
|
|
Li L, Zhuang P, Xie C B, et al. Laser frequency stabilization technology using temperature control and iodine absorption cell technology [J]. Infrared and Laser Engineering, 2021, 50 (3): 86-93.
|
[54] |
Ishii S, Mizutani K, Baron P, et al. Partial CO2 Column-Averaged Dry-Air Mixing Ratio from Measurements by Coherent 2-μm Differential Absorption and Wind Lidar with Laser Frequency Offset Locking [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29 (9): 1169-1181.
|
[55] |
Imaki M, Tanaka H, Hirosawa K, et al. Demonstration of 1.53μm coherent DIAL for simultaneous profiling of water vapor density and wind speed [J]. Optics Express, 2020, 28 (18).
|
|
Yan Q, Yuan M, He T T, et al. Pulse Laser Frequency Locking Method Based on Molecular A bsorption [J]. Acta Optica Sinica, 2019, 39 (10): 326-334.
|
|
|
|