|
|
Research Progress of Acetylene Frequency Stabilized Laser Technology in 1.5μm Optical Fiber Communication Band |
YANG Hua-peng1,2,WANG Jian-bo2,ZHANG Bao-wu1,YING Cong2,ZHANG Ming-yu2,OUYANG Ye-feng1,ZOU Jing-peng2 |
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract The 1.5μm acetylene saturable absorption spectral line is the frequency reference standard officially recommended by the International Committee of Weights and Measures to reproduce the definition of ‘meter’ in the optical fiber communication band. Acetylene frequency stabilized laser can be divided into linear absorption and saturable absorption according to the frequency stabilization method. Compared with linear absorption, saturable absorption has the advantage of the doppler free, which makes the laser linewidth narrower, frequency stability and repeatability higher, the short-term frequency stability can reach the order of 10-13 and the wavelength drift is 10-12 magnitude. Relying on the 13C2H2 (ν1+ν3) P(16) spectral line, the microcell is expected to realize the all fiber link propagation of the frequency stabilized laser, providing a new development direction for the frequency stabilized laser source with high integration and strong anti-interference ability. High performance 1.5μm near-infrared frequency stabilized laser provides wavelength reference sources for dense wavelength multiplexing systems, precision optical fiber sensing, and other fields. Combing with femtosecond optical frequency comb technology,it can further improve the laser wavelength value transmission traceability system in optical communication, improve the measurement capability of the laser wavelength in the near-infrared band, and provide a quantitative guarantee for precise measurement in the optical fiber band.
|
Received: 21 August 2022
Published: 13 January 2023
|
|
|
|
|
[16] |
周开军, 赵华凤, 俞涛, 等.1.53 μm光纤光栅外腔半导体激光器乙炔吸收稳频 [J]. 量子电子学报, 2005, 22 (4): 603-606.
|
[12] |
周钊.基于密集波分复用的无源光网络关键技术研究[D]. 上海:上海交通大学, 2015.
|
[2] |
Sardesai H P, Shen Y, Ranganathan R. Optima-l WDM layer partitioning and transmission reach in optical networks[C]// Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. California, USA, 2005.
|
[6] |
王建波, 殷聪, 钱进, 等.计算电容屏蔽电极位移测量的不确定度评估 [J]. 计量学报, 2022, 43 (4): 437-444.
|
[15] |
吕梦洁, 王光明, 颜树华, 等.原子干涉重力仪集成光源系统综述 [J]. 电子测量与仪器学报, 2021, 35 (7): 1-10.
|
[21] |
周炳琨,高以智.激光原理[M]. 北京:国防工业出版社,2009.
|
[23] |
陈长水, 王芳, 刘颂豪, 等. 半导体激光器稳频技术综述 [J]. 量子电子学报, 2010, 27 (5): 513-521.
|
[4] |
Vaganov M A, Moskaletz O D, Preslenev L N, et al. The parallel spectrum analyzer of optical signals[C]// Conference on Optics and Photonics for Information Processing IV. California, USA, 2010.
|
[5] |
张超超, 王建波, 殷聪, 等.基于光学锁相环的高稳定度激光稳频方法研究 [J]. 计量学报, 2022, 43 (9): 1154-1160.
|
[8] |
Sakai Y, Sudo S, Ikegami T. Frequency stabilization of laser diodes using 1.51~1.55 μm absorption lines of 12C2H2 and 13C2H2 [J]. IEEE Journal of Quantum Electronics, 1992, 28 (1): 75-81.
|
[10] |
Hong F L, Onae A, Jie J, et al. Absolute frequency measurement of an acetylene stabilized laser at 1542 nm [J]. Optics Letters, 2003, 28 (23): 2324-2326.
|
[13] |
Pfeifle J, Kordts A, Marin P, et al. Full C and L band transmission at 20 Tbit/s using cavity soliton kerr frequency combs[C]// Conference on Lasers and Electro-Optics (CLEO). California, USA, 2015.
|
|
Zou K J, Zhao H F, Yu T, et al. Acetylene absorption frequency stabilization of 1.53 μm fiber grating external cavity semiconductor laser [J]. Journal of Quantum Electronics, 2005, 22 (4): 603-606.
|
[18] |
Sakai Y, Yokohama I, Kano G, et al. Frequency stabilized laser diode locked to acetylene gas absorption lines using fiber pig-tail type acoustic optical modulator [J]. Photonics Technology Letters IEEE, 1992, 4 (1): 96-98.
|
|
Mo J B, Wang Q J. Detection and frequency stabilization of acetylene molecular lines in 1.5μm band by external cavity semiconductor laser [J]. Acta Metrologica Sinica, 1994, 15 (1): 66-69.
|
[20] |
李天初, 钱进, 张小平, 等.1.5μm波长DFB半导体激光乙炔 (12C2H2)线性吸收稳频 [J]. 计量学报, 2001, 22 (3): 161-163.
|
[24] |
贡昊, 王宇, 白金海, 等.半导体激光器稳频综述 [J]. 计测技术, 2019, 39 (3): 1-7.
|
[25] |
苑丹丹, 胡姝玲, 刘宏海, 等.激光器稳频技术研究 [J]. 激光与光电子学进展, 2011, 48 (8): 22-28.
|
[3] |
Igarashi K, Tsuritani T, Morita I, et al. Frequency stabilization of multiple semiconductor lasers for nyquist-WDM transmission systems[C]// Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. California, USA, 2005.
|
[7] |
Yang R, Zhu L, Zhang Y, et al. Strain sensing characteristics of fiber laser based on saturable absorption frequency stabilization technology [J]. Nanotechnology and Precision Engineering, 2016, 12 (9): 37-42.
|
[11] |
Fang Z, Li T, Fang Y, et al. A practical l.5 μm wavelength transfer standard based on acetylene absorption lines[C]//Semiconductor Lasers and Applications. Beijing, China, 2002.
|
[19] |
么佳斌, 王庆吉.外腔半导体激光器探测1.5μm 波段乙炔分子谱线及稳频 [J]. 计量学报, 1994, 15 (1): 66-69.
|
|
Wang J B, Yin C, Shi C Y, et al. Wavelength reference source for high power iodine stabilized He-Ne laser [J]. Infrared and Laser Engineering, 2021, 50 (4): 120-126.
|
|
Gong H, Wang Y, Bai J H, et al. Overview of frequency stabilization of semiconductor lasers [J]. Measurement Technology, 2019, 39 (3): 1-7.
|
|
Yuan D D, Hu S L, Liu H H, et al. Research on laser frequency stabilization technology [J]. Advances in Lasers and Optoelectronics, 2011, 48 (8): 22-28.
|
[27] |
Kurosu T, Sterr U. Frequency-stabilization of a 1.54 micrometer DFB-laser diode to Doppler-free absorption lines of acetylene[C]// Laser Frequency Stabilization, Standards, Measurement, and Applicatio. California, USA, 2001.
|
[29] |
Raj R K, Bloch D, Snyder J J, et al. High frequency optically heterodyned saturation spectroscopy via resonant degenerate four wave mixing [J]. Journal of the Optical Society of America, 1980, 44 (19): 1251-1254.
|
|
Wang J B, Yin C, Qian J, et al. Uncertainty evaluation on displacement of blocking electrodes in calculable capacitor [J]. Acta Metrologica Sinica, 2022, 43 (4): 437-444.
|
|
Lü M J, Wang G M, Yan S H, et al. A review of the integrated light source system of atomic interference gravimeter [J]. Journal of Electronic Measurement and Instrumentation 2021, 35 (7): 1-10.
|
[22] |
王建波, 殷聪, 石春英, 等. 高功率碘稳频He-Ne激光波长参考源 [J]. 红外与激光工程, 2021, 50 (4): 120-126.
|
[28] |
Svelto C, Galzerano G, Bava E, et al. 194369569.4 (5) MHz optical frequency standard based on 13C2H2 P (16) saturated line[C]// IEEE Instrumentation & Measurement Technology Conference. Alaska, USA, 2002.
|
[30] |
Nakagawa K, Sato Y, Musha M, et al. Modulation free acetylene stabilized lasers at 1542 nm using modulation transfer spectroscopy [J]. Applied Physics B, 2005, 80 (4): 479-482.
|
[32] |
Balling P, Fischer M, Kubina P, et al. Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser [J]. Optics Express, 2005, 13 (23): 9196-9201.
|
[33] |
Wang J, Qian J, Yin C, et al. Diode laser wavelength standard based on 13C2H2 near infrared spectroscopy at NIM[C]// Semiconductor Lasers and Applications VIII. Beijing, China, 2018.
|
[34] |
Hald J, Nielsen L, Petersen J C, et al. Fiber laser optical frequency standard at 1.54 μm [J]. Optics Express, 2011, 19 (3): 2052-2063.
|
[35] |
Nakagawa K, Labachelerie M D, Awaji Y, et al. Accurate optical frequency atlas of the 1.5μm bands of acetylene [J]. Journal of the Optical Society of America B, 1996, 13 (1): 2708-2714.
|
[37] |
Knabe K, Wu S, Lim J, et al. 10 kHz accuracy of an optical frequency reference based on 12C2H2 filled large core kagome photonic crystal fibers [J]. Optics Express, 2009, 17 (18): 16017-16026.
|
[38] |
Wang C C, Wheeler N V, Fourcade-Dutin C, et al. Acetylene frequency references in gas filled hollow optical fiber and photonic microcells [J]. Applied Optics, 2013, 52 (22): 5430-5439.
|
[39] |
Triches M, Michieletto M, Hald J, et al. Optical frequency standard using acetylene filled hollow core photonic crystal fibers [J]. Optics Express, 2015, 23 (9): 11227-11241.
|
[1] |
Ahtee V, Merimaa M, Nyholm K. Fiberbased acetylene stabilized laser [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (4): 1211-1216.
|
[9] |
Onae A, Ikegami T, Sugiyama K. Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778nm using a two color mode locked fiber laser [J]. Metrology Institute report, 2001, 50 (1): 49-56.
|
[17] |
Sudo S, Sakai Y, Yasaka H, et al. Frequency stabilized DFB laser module using 1.53159 μm absorption line of C2H2 [J]. IEEE Photonics Technology Letters, 1989, 1 (10): 281-284.
|
|
Chen C S, Wang F, Liu S H, et al. A review of frequency stabilization technology for semiconductor lasers [J]. Journal of Quantum Electronics, 2010, 27 (5): 513-521.
|
[31] |
Yoshii K, Inamura T, Sagawa H, et al. Modulation free frequency stabilized laser at 1.5μm using a narrow linewidth diode laser[C]//CLEO: Applications and Technology. California, USA, 2017.
|
[40] |
Triches M, Michieletto M, Hald J, et al. Portable optical frequency standard based on sealed gas filled hollow core fiber using a novel encapsulation technique [J]. Applied physics, 2015, 131 (3): 251-258.
|
[41] |
Zektzer R, MT Hummon, Stern L, et al. Nanoscale Photonic Waveguides: A chip scale optical frequency reference for the telecommunication band based on acetylene [J]. Laser and Photonics Reviews, 2020, 14 (6): 21-27.
|
[42] |
Yoshida M, Kasai K, Hongo J, et al. A C2H2 frequency stabilized erbium-doped fiber laser and its application to coherent communication [J]. International Society for Optics and Photonics, 2007, 44 (25): 67-75.
|
[43] |
Koizumi Y, Toyoda K, Yoshida M, et al. 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km [J]. Optics Express, 2012, 20 (11): 12508-12514.
|
[44] |
Tokuhira K, Suzuki F, Yoshida M, et al. A Cesium optical atomic clock with high optical frequency stability [J]. Ieice Electronics Express, 2012, 9 (18): 1496-1503.
|
[45] |
Mitsuru M, Yosuke T, Ken’ichi N, et al. Practical optical frequency measurement system around 1.5μm based on an acetylene-stabilized laser locked optical frequency comb [J]. Optics Communications, 2007, 272 (1): 211-216.
|
|
Zhang C C, Wang J B, Yin C, et al. Research on high stability laser frequency stabilization method based on optical phase locked loop [J]. Acta Metrologica Sinica, 2022, 43 (9): 1154-1160.
|
[14] |
Talvard T, Westergaard P G, Depalatis M V, et al. Enhancement of the performance of a fiber based frequency comb by referencing to an acetylene-stabilized fiber laser [J]. Optics Express, 2017, 25 (3): 2259-2269.
|
|
Li T C, Qian J, Zhang X P, et al. 1.5μm wavelength DFB semiconductor laser acetylene (12C2H2) linear absorption frequency stabilization [J]. Acta Metrologica Sinica, 2001, 22 (3): 161-163.
|
[26] |
Czajkowski A, Madej A A, Dubé P. Development and study of a 1.5μm optical frequency standard referenced to the P (16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2 [J]. Optics Communications, 2004, 234 (1): 259-268.
|
[36] |
Kasai K, Yoshida M, Nakazawa M, et al. A 13C2H2 frequency stabilized polarization maintained erbium fiber ring laser with no frequency modulation[C]// Lasers and Electro Optics. California, USA, 2005.
|
[46] |
Cherfan C, Denis M, Bacquet D, et al.Multi frequency telecom fibered laser system for potassium laser cooling [J].Applied Physics Letter,2021,119(20):111-116.
|
[48] |
Lee S H, Ryu H Y, Kim Y P, et al. Visible to near infrared standard source generation using acetylene (13C2H2) stabilized comb injection locked technique [J]. Optics Communications, 2010, 283 (19): 3743-3746.
|
[49] |
Lee S H, Suh H S. Near infrared standard sources, generated by electro optic frequency comb, using injection locked DFB laser [J]. Optics Communications, 2014, 312 (5): 7-10.
|
[47] |
Cherfan C, Manai I, Zemmouri S, et al. Acetylene based frequency stabilization of a laser system for potassium laser cooling [J]. Optics Express, 2020, 28 (1): 494-503.
|
[50] |
Kawata Y, Hyashi K, Aoto T. Two wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation [J]. Optics Express, 2015, 23 (12): 16024-16034.
|
|
|
|