|
|
The Principle and Prospect of AC Power Standards |
BAI Jing-fen1,MENG Jing1,ZHAO Dong-fang2,LI Shi-song2,DUAN Mei-mei3 |
1. China Electric Power Research Institute Co., Ltd, Beijing 100192, China
2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
3. State Grid Jiangsu Electric Power Co., Ltd Marketing Service Center, Nanjing, Jiangsu 210019, China |
|
|
Abstract As the core element for electrical energy traceability, AC power standards play a crucial role in ensuring fair and equitable electrical energy trade settlement. The methods commonly used to construct high-precision AC power standards and the related traceability paths are summarized. The major measurement uncertainty components during the calibration of the electric energy meters via different the AC power standards are analyzed. By reviewing the technical aspects in existing AC power standards and the new requirements of power system measurement, the future development trends for electric power and energy standards are prospected.
|
Received: 18 April 2022
Published: 28 December 2022
|
|
|
|
|
[1]Ramm G, Moser H,Braun A. A new scheme for generating and measuring active, reactive, and apparent power at power frequencies with uncertainties of 5 ppm[C]//1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254). Washington D.C., USA, 1998.
[2]Ramm G, Moser H, Braun A. A new scheme for generating and measuring active, reactive, and apparent power at power frequencies with uncertainties of 2.5×10-6[J]. IEEE Transactions on Instrumentation and Measurement, 1999, 48 (2): 422-426.
[3]Shapiro E Z, Park Y T, Budovsky N, et al. A new power transfer standard, its investigation and intercomparison[J]. IEEE transactions on instrumentation and measurement, 1997, 46 (2): 412-415.
[4]Budovsky I. Standard of Electrical Power at Frequencies Up to 200 kHz[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (4): 1010-1016.
[5]Poirier W, Lafont F, Djordjevic S, et al. A programmable quantum current standard from the Josephson and the quantum Hall effects[J]. Journal of Applied Physics, 2014, 115 (4): 1-6.
[6]Waltrip B C, Nelson T L, Berilla M, et al. Comparison of AC power referenced to either PJVS or JAWS[C]//IEEE. 2020 Conference on Precision Electromagnetic Measurements (CPEM).Denver, CO, USA, 2020.
[7]Waltrip B C, Gong B, Nelson T L, et al. AC power standard using a programmable Josephson voltage standard[C]//2008 Conference on Precision Electromagnetic Measurements Digest. Broomfield, CO, USA, 2008.
[8]Wang L, Jia Z, Liu Z, et al. Precision AC Power Measurement Based on Differential Sampling System Using ACPJVS[C]//World Congress of the International Measurement Confederation (IMEKO 2018).2018.
[9]Djokic B. Development of a low-frequency quantum-based ac power standard at NRC Canada[C]//2008 Conference on Precision Electromagnetic Measurements Digest.Broomfield, CO, USA, 2008.
[10]Burroughs C J, Dresselhaus P D, Rufenacht A, et al. NIST 10 V Programmable Josephson Voltage Standard System[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (7): 2482-2488.
[11]贾正森, 王磊, 徐熙彤, 等.基于约瑟夫森量子电压的交流功率测量系统及方法研究[J]. 计量学报,2020, 41(4): 469-474.
Jia Z S, Wang L, Xu X T, et al. Research on AC Power Measurement System and Method Based on Josephson Quantum Voltage[J]. Acta Metrologica Sinica, 2020, 41 (4): 469-474.
[12]周琨荔. 脉冲驱动的交流约瑟夫森电压标准研究[D]. 北京: 清华大学, 2017.
[13]张鹏. 薄膜热电变换器热电转换误差测试系统研制[D]. 杭州: 中国计量大学, 2016.
[14]Han J, Huang R, Zhang P, et al. A Novel Film Thermal Converter Based on an Electrothermally Excited/Piezoresistively Detected Microbridge Resonator[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67 (12): 2854-2862.
[15]周琨荔, 屈继峰, 张钟华, 等. 交流量子电压标准研究综述[J]. 计量学报, 2017, 38 (4): 486-491.
Zhou K L, Qu J F, Zhang Z H, et al. The Status of AC Quantum Voltage Standards[J]. Acta Metrologica Sinica, 2017, 38 (4): 486-491.
[16]Ihlenfeld W G K, Mohns E, Dauke K. Classical Nonquantum AC Power Measurements With Uncertainties Approaching 1μW/VA[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (2): 410-413.
[17]Palafox L, Behr R, Ihlenfeld W G K, et al. The Josephson-effect-based primary AC power standard at the PTB: Progress report[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 58 (4): 1049-1053.
[18]徐熙彤, 贾正森, 王磊, 等. 基于约瑟夫森量子电压的谐波电压测量方法研究[J]. 计量学报,2020,41 (3): 311-316.
Xu X T, Jia Z S, Wang L, et al. Research on Harmonic Voltage Measurement Method Based on Josephson Quantum Voltage[J]. Acta Metrologica Sinica, 2020, 41 (3): 311-316.
[19]Chen S F, Amagai Y, Maruyama M, et al. Uncertainty evaluation of a 10 V rms sampling measurement system using the AC programmable Josephson voltage standard[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (12): 3308-3314.
[20]贺青,邵海明,梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552.
He Q, Shao H M, Liang C B. Review on the Research Progress of Electromagnetic Metrology[J]. Acta Metrologica Sinica, 2021, 42(11): 1543-1552.
[21]Li S, Wang Q, Zhao W, et al. From μ0 to e: A Survey of Major Impacts for Electrical Measurements in Recent SI Revision[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (9): 5956-5965.
[22]李世松, 赵伟, 黄松岭, 等. 国际单位制变革与电磁测量发展互促共赢[J]. 中国电机工程学报, 2021,41 (S1): 261-274.
Li S S, Zhao W, Huang S L, et al. Electrical Measurements and Revision of International System of Units: A Win-win Outcome[J]. Proceedings of the CSEE, 2021, 41 (S1): 261-274. |
|
|
|