|
|
A Detection Method for Positioning Accuracy of 3D Phantom System in Situ Based on Refraction Compensation of Laser Tracker |
JI Zhen-chao1,LI Jia-fu2,DU Hua2,ZHU Xiao-ping2,ZHANG Hui2,YU Jing1 |
1. 中国计量大学 计量测试工程学院,浙江 杭州 310018
2. 中国计量科学研究院,北京 100029 |
|
|
Abstract A detection method of the positioning accuracy of medical 3D phantom based on laser tracker refraction compensation is proposed, and the model of ADM and IFM ranging error compensation and space position coordinates solution of target ball is established, and theoretical model verification experiment and contrast experiment of 3D phantom positioning accuracy detection are carried out, and the high precision measurement of laser tracker in glass media is realized. The experimental results show that the average deviation of X, Y, and Z coordinates is respectively reduced from 3.410mm, 0.407mm, 1.732mm to 0.022mm, 0.015mm, 0.035mm, and the average deviation of the distance between adjacent points is reduced from 0.266mm to 0.017mm before and after compensation, which is equivalent to the measurement accuracy of the laser tracker in the air. On this basis, taking the suspension detection method without glass shielding as the reference, the positioning errors measured by the two methods are basically consistent. Finally, using Monte Carlo method, the standard uncertainty of the distance error between adjacent points is 0.012mm, which can meet the detection requirement.
|
Received: 07 April 2021
Published: 14 October 2022
|
|
|
|
|
[1]陈晓, 刘旭红, 李文辉. 放射治疗质量保证和质量控制工具-三维蓝水箱(3D-Blue phantom)剂量测量系统[J]. 中国医疗器械信息, 2017, 23(14): 133-134.
Chen X, Liu X H, Li W H. Quality assurance and quality control tool for radiotherapy-3D-Blue phantom dosing system[J]. China Medical Device Information, 2017, 23(14): 133-134.
[2]Das I J, Cheng C W, Watts R J, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM[J]. Medical Physics, 2008, 35(9):4186-4215.
[3]吴湘阳, 张坤, 常晓斌, 等. 三维水箱不同测试条件对数据采集结果的影响和分析[J]. 现代肿瘤医学, 2015, 23(22): 3322-3326.
Wu X Y, Zhang K, Chang X B, et al. Three-dimensional waterphantom system data acquisition result and analysis of different test conditions[J]. Modern Oncology, 2015, 23(22): 3322-3326.
[4]YY/T 1538-2017放射治疗用自动扫描水模体系统性能和试验方法[S].
[5]张辉, 龚晓明, 张彦立, 等. 自动扫描水模体系统定位性能测量装置: CN209405534U[P]. 2019-09-20.
[6]张文明, 王鑫, 张强, 等. 基于粒子群标定的多介质折射成像定位算法[J]. 光学学报, 2013, 33(5): 179-184.
Zhang W M, Wang X, Zhang Q, et al. Positioning algorithm in multi-media refractive imaging system based on particle swarm optimization calibration[J]. Acta Optica Sinica, 2013, 33(5): 179-184.
[7]Chen X, Yang Y H. Two-view camera housing parameters calibration for multi-layer flat refractive interface[C]//IEEE. Computer Vision & Pattern Recognition. Columbus, USA, 2014.
[8]杨宇, 于佳, 王添, 等. 水下环境的线结构光扫描和三维重建[J]. 光学学报, 2012, 32(F12): 91-94.
Yang Y, Yu J, Wang T, et al. Underwater laser line scan and three-dimensional reconstruction[J]. Acta Optica Sinica, 2012, 32(F12): 91-94.
[9]Matos G, Buschinelli P, Pinto T. Underwater laser triangulation sensor model with flat refractive interfaces[J]. IEEE Journal of Oceanic Engineering, 2019: 1-9.
[10]史久林, 郭鹏峰, 黄育, 等. 温度、湿度及压强对激光在水中衰减特性的影响[J]. 物理学报, 2015, 64(2): 216-221.
Shi J L, Guo P F, Huang Y, et al. Influences of temperature, humidity and pressure on the attenuation characteristics of laser beam in water[J]. Acta Physica Sinica, 2015, 64(2): 216-221.
[11]杨凡, 范百兴, 李广云, 等. 激光跟踪仪动态测量精度测试[J]. 计量学报, 2014, 35(z1): 119-122.
Yang F, Fan B X, Li G Y, et al. Accuracy testing on dynamic measure of laser tracker[J]. Acta Metrologica Sinica, 2014, 35(z1): 119-122.
[12]朱云龙, 胡鹤鸣, 金仲佳, 等. 基于激光跟踪仪的拖曳水槽车速动态校准[J]. 计量学报, 2019, 40(2): 272-277.
Zhu Y L, Hu K M, Jin Z J, et al. Dynamic calibration of towing tank speed based on laser tracker[J]. Acta Metrologica Sinica, 2019, 40(2): 272-277.
[13]Agrawal A, Ramalingam S, Taguchi Y, et al. A theory of multi-layer flat refractive geometry[C]//IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition. NewYork, USA, 2012.
[14]汪友生, 徐小平. 相位法激光测距的实现[J]. 北京工业大学学报, 2003, 29(4): 424-427.
Wang Y Z, Xu X P. The realization of laser ranging by phase method[J]. Journal of Beijing University of Technology, 2003, 29(4): 424-427.
[15]李方. 基于AT960激光跟踪仪的工业测量关键技术与系统开发研究[D]. 武汉: 武汉大学, 2018.
[16]金涛, 唐一揆, 乐燕芬, 等. 一种单频激光干涉仪非线性误差修正方法研究[J]. 计量学报, 2020, 41(6): 676-681.
Jing T, Tang Y K, Le Y F, et al. A research on correction method of nonlinear errors for homodyne laser interferometer[J]. Acta Metrologica Sinica, 2020, 41(6): 676-681.
[17]Sladek J, Gaska A. Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method[J]. Measurement, 2012, 45(6): 1564-1575. |
|
|
|