|
|
Improved YOLOv3 Algorithm for Surface Defect Detection of Aluminum Profile |
YAO Bo1,WEN Xiu-lan1,JIAO Liang-bao2,WANG Shu-gang3,QIAN Zheng4,LI Zi-kang1 |
1. School of Automation, Nanjing Institute of Technology, Nanjing, Jiangsu 211167,China
2. Jiangsu Province Engineering Research Center of Intelli Sence Technology and System, Nanjing, Jiangsu 211167,China
3. Wuxi Institute of Metrology and Testing, Wuxi, Jiangsu 214000,China
4. Nanjing Institute of Measurement and Testing Technology, Nanjing, Jiangsu 210049,China |
|
|
Abstract Aiming at the problems of low accuracy and low efficiency in the detection of surface defects of aluminum profile, an improved method based on YOLOv3 is proposed. Firstly, the k-means clustering algorithm is used to cluster the collected data sets, and the target candidate box with the optimal size is selected. Then, considering the large surface defects of aluminum profile, the network hierarchical structure of YOLOv3 is adjusted. Six CBL units before the target detection layer are changed into four CBL units, and two residual units are added to improve the reuse of features. Compared with the classical convolution network Faster-RCNN and SSD, a large number of experimental results show that the accuracy of the proposed algorithm can reach 97%, and the detection speed can reach 47 frame/s. The proposed method is obviously better than Faster-RCNN and SSD, which is suitable for the aluminum profile surface defect detection with high accuracy and rapidity.
|
Received: 24 May 2021
Published: 14 October 2022
|
|
Fund:Research on Calibration of Robot Geometric Parameters and Uncertainty Evaluation Based on GPS |
|
|
|
[1]邵伟, 彭鹏, 周阿维, 等. 工件表面低对比度缺陷快速准确识别方法[J]. 计量学报, 2019, 40(5): 793-797.
Shao W, Peng P, Zhou A W, et al. A fast and accurate identification method for low contrast defects on workpiece surface[J]. Acta Metrologica Sinica, 2019, 40(5): 793-797.
[2]王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27(6): 517-523.
Wang X B, Li J, Yao M H, et al. Surface defect detection method of solar cell based on deep learning[J]. Pattern Recognition and Artificial Intelligence 2014, 27(6): 517-523.
[3]郭保苏, 吴文文, 付强. 基于支持向量机分类策略的多晶硅电池片色差检测[J]. 计量学报, 2019, 40(6): 1013-1019.
Guo B S, Wu W W, Fu Q. Chromatic Aberration Detection of Polysilicon Cells Based on Support Vector Machine Classification Strategy[J]. Acta Metrologica Sinica, 2019, 40(6): 1013-1019.
[4]徐义鎏, 贺鹏, 任东, 等. 基于改进faster RCNN的木材运输车辆检测[J]. 计算机应用, 2020, 40(S1): 209-214.
Xu Y L, He P, Ren D, et al. Detection of timber transport vehicle based on improved Faster RCNN[J]. Computer Application, 2020, 40(S1): 209-214.
[5]李兰, 奚舒舒, 张才宝, 等. 基于改进SSD模型的工件表面缺陷识别算法[J]. 计算机工程与科学, 2020, 42(9): 1608-1615.
Li L, Xi S S, Zhang C B, et al. Surface defect recognition algorithm based on improved SSD model[J]. Computer Engineering and Science, 2020, 42(9): 1608-1615.
[6]代小红, 陈华江, 朱超平. 一种基于改进Faster RCNN的金属材料工件表面缺陷检测与实现研究[J]. 表面技术, 2020, 49(10): 362-371.
Dai X H, Cheng H J, Zhu C P. A study on Surface Defect Detection and Realization of Metal Workpiece Based on Improved Faster RCNN[J]. Surface technology, 2020, 49(10): 362-371.
[7]Wei R B, Song Y H, Zhang Y L. Enhanced Faster Region Convolutional Neural Networks for Steel Surface Defect Detection[J]. ISIJ International, 2020, 60(3): 539-545.
[8]沈远. 基于深度学习的改进热镀锌板表面缺陷检测算法[D]. 杭州: 浙江大学, 2020.
[9]蔡彪, 沈宽, 付金磊, 等. 基于Mask R-CNN的铸件X射线DR图像缺陷检测研究[J]. 仪器仪表学报, 2020, 41(3): 61-69.
Cai B, Shen K, Fu J L, et al. Defect Detection of Casting X-ray DR image based on Mask R-CNN[J]. Journal of Instrumentation, 2020, 41(3): 61-69.
[10]胡珊珊, 肖勇, 王保帅, 等. 基于深度学习的PCB缺陷检测研究[J]. 电测与仪表, 2021, 58(3): 139-145.
H S S, Xiao Y, Wang B S, et al. Research on PCB Defect Detection Based on Deep Learning[J]. Electrical measurement and Instrumentation, 2021, 58(3): 139-145.
[11]Redmon J, Farhadi A. Yolov3: An incremental improvement[EB]. https://ui.adsabs.harvard.edu/abs/2018arXiv180402767R, 2018.
[12]Lin C. Detection Method of Offshore Droppers Based on UAV and YOLOv3[J]. World Scientific Research Journal, 2019, 5(9): 288-295.
[13]Luo Z, Yu H L, Zhang Y Z. Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model[J]. Sensors, 2020, 20(16): 4430: 1-18
[14]谭芳, 穆平安, 马忠雪. 基于YOLOv3检测和特征点匹配的多目标跟踪算法[J]. 计量学报, 2021, 42(2): 157-162.
Tan F, Mu P A, Ma Z X. Multi-target Tracking Algorithm Based on YOLOv3 Detection and Feature Point Matching[J]. Acta Metrologica Sinica, 2021, 42(2): 157-162.
[15]Zhao L Q, Li S Y. Object Detection Algorithm Based on Improved YOLOv3[J]. Electronics, 2020, 9(3): 537: 1-11.
[16]Yang F, Yang D M, He Z M, et al. Automobile Fine-Grained Detection Algorithm Based on Multi-Improved YOLOv3 in Smart Streetlights[J]. Algorithms, 2020, 13(5): 114: 1-22. |
|
|
|