|
|
High Resolution and Practical Photonic Thermometer by Side-coupled One-dimensional Photonic Crystal Microcavity |
XIONG Yi-ti1,2,KANG Guo-guo1,ZHANG cheng1,2,XU Tong-tong1,2,GU Lin-peng3,4,5,GAN Xue-tao3,4,5,PAN Yi-jie2,QU Ji-feng2 |
1.Beijing Institution of Technology, Beijing 100081,China
2.National Institute of Metrology, Beijing 100029,China
3.Schoolof Physical Science and Technology, Northwestern Polytechnical University, Xi′an, Shaanxi 710129, China
4. Shaanxi KeyLaboratory of Optical Information Technology, Northwestern Polytechnical University, Xi′an, Shaanxi 710129, China
5.Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology,Northwestern Polytechnical University, Xi′an, Shaanxi 710129, China |
|
|
Abstract Aiming at in-line coupled one-dimensional photonic crystal (1D PhC) microcavity with high quality factor (Q) but extremely low transmittance, a side-coupled 1D PhC thermometer with high resolution, signal to noise ratio and dynamic range was proposed. Through modulating reflection coefficient of photonic crystal units and overlap of mode field between the microcavity and coupling waveguide, the Q and transmittance of the PhC device were improved. The total Q-factor, sensitivity, extinction ratio, and mode spacing between fundamental and secondary mode of the fabricated PhC device were 2.7×104, 65.6pm/℃, 0.45 and 18.5nm, respectively. By adopting a sweep frequency measurement technique, the resolution of the proposed photonic thermometer reaches millikelvin and the sensing range is over 280℃.
|
Received: 13 April 2021
Published: 19 September 2022
|
|
|
|
|
[1]赵俭. 基于双热传导方程的高温燃气温度传感器设计方法[J]. 计量学报, 2022, 43(2): 215-221.
Zhao J. Design Method of High Gas Temperature Sensor Based on Double Heat Conduction Equation[J]. Acta Metrologica Sinica, 2022, 43(2): 215-221.
[2]杨胜良, 冯晓娟, 林鸿, 等. 实用氦气声学温度计初步研究[J]. 计量学报, 2020, 41(6): 633-639.
Yang S L, Feng X J, Lin H, et al. Preliminary research on practical acoustic gas thermometry using Helium[J]. Acta Metrologica Sinica, 2020, 41(6): 633-639.
[3]王博阳,曾凡超,傅承玉,等. 基于微型镓固定点的精密铂电阻温度计原位校准的研究[J]. 计量学报, 2022, 43(2): 210-214.
Wang B Y,Zeng F C,Fu B Q, et al. Calibration of Precision Platinum Resistance Thermometer Based on Micro Gallium Fixed-point[J]. Acta Metrologica Sinica, 2022, 43(2): 210-214.
[4]Peng Y, Hou J, Huang Z, et al. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber[J]. Applied Optics, 2012, 51(26): 6361-6367.
[5]Zhang J, Sun H, Rong Q, et al. High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber[J]. Chinese Optics Letters, 2012, 10(7): 070607.
[6]Culshaw B. Optical fiber sensor technologies: opportunities and-perhaps-pitfalls[J]. Journal of Lightwave Technology, 2004, 22(1): 39-50.
[7]Mathew J, Schneller O, Polyzos D, et al. In-fiber Fabry-Perot cavity sensor for high-temperature applications[J]. Journal of Lightwave Technology, 2015, 33(12): 2419-2425.
[8]Luo R, Jiang H,Liang H,et al.Self-referenced temperature sensing with a lithium niobate microdisk resonator[J]. Optics Letters, 2017, 42(7): 1281-1284.
[9]Qiao Q, Xia J, Lee C, et al. Applications of photonic crystal nanobeam cavities for sensing[J].Micromachines,2018,9(11):541-570.
[10]De Vos K, Bartolozzi I, Schacht E, et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing[J]. Optics Express, 2007, 15(12): 7610-7615.
[11]Xu W, Xu C, Qin F, et al. Whispering-gallery mode lasing from polymer microsphere for humidity sensing[J]. Chinese Optics Letters, 2018, 16(8): 081401.
[12]Tanaka Y, Asano T, Noda S. Design of photonic crystal nanocavity with Q-factor of 109[J]. Journal of Lightwave Technology, 2008, 26(11): 1532-1539.
[13]Xu P, Zheng J, Zhou J,et al. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing[J]. Optics Express,2019,27(3):3609-3616.
[14]Clevenson H, Desjardins P, Gan X, et al. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity[J]. Applied Physics Letters, 2014, 104(24): 241108-241112.
[15]You M, Lin Z, Wang F, et al. Chip-scale humidity sensor based on a silicon nanobeam cavity[J]. Optics Letters, 2019, 44(21): 5322-5325.
[16]Dantham V R, Holler S, Barbre C, et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity[J]. Nano Letters, 2013, 13(7): 3347-3351.
[17]Klimov N N, Mittal S, Berger M, et al. On-chip silicon waveguide Bragg grating photonic temperature sensor[J]. Optics Letters, 2015, 40(17): 3934-3936.
[18]Kim G D, Lee H S, Park C H, et al. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process[J]. Optics Express, 2010, 18(21): 22215-22221.
[19]Xu H, Mohammad Hafezi, Fan J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures[J]. Optics Express, 2014,22(3):3098-3104.
[20]Zhang C, Kang G, Xiong Y, et al. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance[J]. Optics Express, 2020, 28(9): 12599-12608.
[21]Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.
[22]Lu H, Sadani B, Ulliac G, et al. Integrated temperature sensor based on an enhanced pyroelectric photonic crystal[J]. Optics Express, 2013, 21(14): 16311-16318.
[23]Notomi M, Kuramochi E, Taniyama H. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Optics Express, 2008, 16(15): 11095-11102.
[24]Quan Q, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide[J]. Applied Physics Letters, 2010, 96(20): 203102-203105.
[25]Zhang Y, Liu P, Zhang S, et al. High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities[J]. Optics Express, 2016, 24(20): 23037-23043.
[26]Halimi S I, Hu S, Afzal F O, et al. Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide[J]. Optics Letters, 2018, 43(17): 4260-4263.
[27]Afzal F O, Halimi S I, Weiss S M. Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap[J]. JOSA B, 2019, 36(3): 585-595.
[28]Liu P, Shi Y. Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities[J]. Optics Express, 2017, 25(23): 28398-28406.
[29]Xu Y, Li Y, Lee R K, et al. Scattering-theory analysis of waveguide-resonator coupling[J]. Physical Review E, 2000, 62(5): 7389-7404.
[30]Liu L, Pu M, Yvind K, et al. High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure[J]. Applied Physics Letters, 2010, 96(5): 051126-051129.
[31]Su J. Label-free single exosome detection using frequency-locked microtoroid optical resonators[J]. Acs Photonics, 2015, 2(9): 1241-1245.
[32]Johnson T J, Borselli M, Painter O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator[J]. Optics Express, 2006, 14(2): 817-831. |
|
|
|