|
|
Research on Nonlinear Mechanish of DC Resistive Voltage Divider |
WANG Chu1,2,ZHANG Li-li1,2,ZHANG Guo-shuai1,2 |
1. Beijing Spacecrafts, Beijing 100094, China
2. Research Center of Space Power Adapter and Control Engineering Techonology, Beijing 100094, China |
|
|
Abstract Aiming at the nonlinear phenomenon of the resistive voltage divider in the DC low voltage division. The independent influencing factors analysis method is used to study the nonlinear mechanism of the DC resistive voltage divider. Through analysis and experimental verification, make sure that the output thermoelectric potential of the resistive voltage divider changes with the working current, lead to the non-linear divider ratio. According to the above study, the nonlinear mathematical model is founded, and proposing the nonlinear correction method. Using the mentioned method, the maximum non-linear deviation of ±200μV DC voltage output is less than 5nV.
|
Received: 26 April 2021
Published: 08 April 2022
|
|
|
|
|
[1] Sang H L, Kwang M Y, Jang Y C, et al. Low Uncertainty Equality Between the Voltage-Dividing and Resistance Ratio of a DC Resistive High Voltage Divider [J]. Journal of Electrical Engineering & Technology , 2019, 14(4): 1789-1795.
[2] Fernando G, Abderrahim K, Jorge R. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider [J]. Sensors , 2017(11): 2657.
[3] 石照民,张江涛,潘仙林, 等. 串并联型电阻分压器相角偏差的自校验方法 [J]. 计量学报, 2020, 41(3): 301-305.
Shi Z M, Zhang J T, Pan X L, et al. Self-calibration of the Phase Angle Errors of RVDs with Serial-parallel Connection Structure[J]. Acta Metrologica Sinica , 2020, 41(3): 301-305.
[4] 王震, 董健年, 张军. 一种用于高压测试的电阻分压器研究[J]. 科学技术与工程, 2016, 16(7): 60-64.
Wang Z, Dong J N, Zhang J. Study of a Resistor Divider for High Voltage Test [J]. Science Technology and Engineering , 2016, 16(7): 60-64.
[5] 王建宇. 微弱信号高精度线性放大电路的设计 [J]. 电子设计工程, 2014(22): 94-96.
Wang J Y. The design of weak signal high-precision linear amplifier circuit [J]. Electronic Design Engineering , 2014(22): 94-96.
[6] 钱雯滨. 低温度系数、低热电势的直流分压器的研制[J]. 江苏教育学院学报(自然科学), 2012, 28(5): 26-29.
Qian W B. Development of a DC Voltage Divider with Low Temperature Coefficient and Low Thermo-EMF [J]. Journal of Jiangsu Institute of Education(Social Science) , 2012, 28(5): 26-29.
[7] Pan X L, Zhang J T, Shi Z M, et al. Establishment of AC power standard at frequencies up to 100 kHz [J]. Measurement , 2018, 125: 151-155.
[8] Chen W D, Xiao J, Shen Y, et al. High precision high voltage divider and its application to electron beam ion traps. [J]. The Review of scientific instruments , 2008, 79(12): 123304.
[9] Pearce J V, Gray J, Veltcheva R I. Characterisation of a selection of AC and DC Resistance Bridge for standard platinum resistance thermometry [J]. International Journal of Thermophysics , 2016, 37(11): 109.
[10] Chojnacky M, Kosior J, Chaves-Santacruz L, et al. Performance assessments of thermometer resistance bridges [R]. NIST Thermodynamic Metrology Group, 2002.
[11] 方信昀, 孙建平, 曾凡超, 等. 高精密测温电桥的标定与评估 [J]. 计量学报, 2016, 37(3): 265-270.
Fang X Y, Sun J P, Zeng F C, et al. Calibration and Evaluation on High Precision Thermometry Bridge [J]. Acta Metrologica Sinica , 2016, 37(3): 265-270.
[12] 丁炯, 王佳音, 王晓娜, 等. ADC型高精密测温电桥非线性误差修正方法研究 [J]. 计量学报, 2020, 41(1): 37-42.
Ding J, Wang J Y, Wang X N, et al. A Nonlinear Error Correction Method for ADC Based High-precision Resistance Thermometry Readout [J]. Acta Metrologica Sinica , 2020, 41(1): 37-42.
[13] Uchida K, Takahashi S, Harii K, et al. Observation of the spin Seebeck effect [J]. Nature , 2008, 455(7214): 778-781.
[14] 王磊, 刘瑞珉. 多路低热电势程控开关的研制 [J]. 电测与仪表, 2004(10): 44-46.
Wang L, Liu R M. Development of programmable Low EMF multi-switch [J]. Electrical Measurement & Instrumentation , 2004(10): 44-46.
[15] Flipse J, Bakker F L, Slachter A, et al. Direct observation of the spin-dependent Peltier effect [J]. Nature Nanotechnology , 2012, 7(3): 166-168.
[16] Keithley Instruments Inc. Precision DC Current, Voltage, and Resistance Measurements [J]. Low Level Measurements , 2004(6): 199~256.
[17] Lee H S. The Thomson effect and the idel equation on thermoelectric coolers [J]. Energy , 2013, 56: 61-69.
[18] 侯镇冰, 何绍杰, 李恕先. 固体热传导 [M]. 上海: 上海科学技术出版社, 1984. |
|
|
|