|
|
Hysteresis Modeling and Parameter Identification of GMM-FBG Current Sensor Based on Dynamic Free Energy Hysteresis Model |
TENG Feng-cheng,YANG Xue-fan,LÜ Deng-yan,YE Wen-hao |
School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract In order to solve the hysteresis nonlinearity and eddy current loss problems in GMM-FBG current sensor, a dynamic free energy hysteresis model of coupled eddy current loss model was proposed, and nonlinear genetic algorithm was used to identify and optimize the parameters of the model, which improved the prediction accuracy of the model to the hysteresis curve at power frequency. A GMM-FBG current sensor experimental platform was built, and the hysteresis model was used to compensate the sensor system and verify the sensor system. The experimental results showed that the model can well predict the dynamic hysteresis nonlinearity of the sensor under power frequency, the prediction error of the model is within 3.6%, and the sensitivity of current measurement can reach 0.069nm/A.
|
Received: 29 June 2020
Published: 08 April 2022
|
|
|
|
|
[1] 王轩. 探究智能电网继电保护技术 [J]. 城市建设理论研究(电子版), 2016(5):131.
Wang X. Exploring smart Grid Relay Protection Technology [J]. Urban Construction Theory Research( Electronic Edition) , 2016(5):131.
[2] 陈霄, 易永仙, 范洁, 等. 基于超磁致伸缩材料的FBG电流传感系统 [J]. 光通信研究, 2016(2): 50-52.
Chen X, Yi Y X, Fan J, et al. FBG Current Sensing System based on Super Magnetostrictive Material [J]. Optical Communication Research , 2016(2): 50-52.
[3] Theune N M, Kaufmann M, Krammer P, et al. Applications of fiber optical sensors in power generators: current and temperatures sensors[C]// OPTO 2000 Proceedings. 4th International Conference and Exhibition on Optoelectronics, Optical Sensors & Measuring Techniques. 2000:125-130.
[4] 李传生,赵叶铭,林飞鹏,等. 短路试验电流光纤测量技术研究[J]. 计量科学与技术,2021, 65(5): 3-7.
Li C S, Zhao Y M, Lin F P, et al. Research on Fiber-Optic Sensing Technology of Short-Circuit Test Current[J]. Metrology Science and Technology , 2021, 65(5): 3-7.
[5] 王薇. 超磁致伸缩智能构件驱动系统的研究和开发 [D]. 杭州:浙江大学, 2012.
[6] 葛津铭, 陈彤, 林丞, 等. 基于超磁致伸缩材料的电流互感器涡流损耗模型与分析 [J]. 磁性材料及器件, 2018, 49(6): 5-9+61.
Ge J M, Chen T, Lin C, et al. Eddy Current Loss Model and Analysis of current Transformer based on Super Magnetostrictive Material [J]. Magnetic Materials and Devices , 2008, 49(6): 5-9+61.
[7] 喻曹丰, 王传礼, 解甜, 等. 基于GMM的高性能微定位工作台驱动系统的研制 [J]. 机械工程学报, 2019, 55(9): 136-143.
Yu C F, Wang C L, Xie T, et al. Development of high-performance Micro-positioning Table Driving System based on GMM [J]. Chinese Journal of Mechanical Engineering , 2019, 55(9): 136-143.
[8] 李慧奇, 崔灿, 赵小军, 等. 基于一阶回转曲线的Preisach磁滞模型研究 [J]. 磁性材料及器件, 2015(3): 47-50+72.
Li H Q, Cui C, Zhao X J, et al. Preisach Hysteresis Model based on first-order rotation curve [J]. Magnetic Materials and Devices , 2015(03): 47-50+72.
[9] Zhang B, Gupta B, Ducharne B, et al. Dynamic Magnetic Scalar Hysteresis Lump Model Based on Jiles-Atherton Quasi-Static Hysteresis Model Extended With Dynamic Fractional Derivative Contribution [J]. IEEE Transactions on Magnetics , 2018, 54 (11):1-5.
[10] 杨延菊. 基于神经网络的Jiles-Atherton磁滞模型的实现 [D]. 保定: 华北电力大学, 2013.
[11] 田春, 汪鸿振. 超磁致伸缩执行器的自由能磁滞模型研究[J]. 声学技术, 2004, 23(21): 353-356.
Tian C, Wang H Z. Study on free energy hysteresis model of super magnetostrictive actuator [J]. Acoustics technology , 2004, 23(21): 353-356.
[12] Davino D, Visone C, Ambrosino C, et al. Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials [J]. Sensors & Actuators A Physical , 2008, 147(1): 127-136.
[13] 刘慧芳, 王汉玉, 杨国哲, 等. 考虑磁场分布的精密磁致伸缩驱动器的涡流损耗特性研究 [J]. 传感技术学报, 2017, 30(6): 814-819.
Liu H F, Wang H Y, Yang G Z, et al. Study on eddy Current Loss characteristics of precision magnetostrictive Actuator considering magnetic field distribution [J]. Journal of Sensing Technology , 2017, 30(6): 814-819.
[14] 滕峰成, 戴峰峰, 王思征, 等. 基于动态P模型的GMM-FBG电流传感器磁滞建模 [J]. 传感技术学报, 2013, 26(4): 487-491.
Teng F C, Dai F F, Wang S Z, et al. Hysteresis modeling of GMM-FBG Current Sensor based on dynamic P model [J]. Journal of Sensing Technology , 2013, 26(4): 487-491.
[15] Smith R C, Dapino M J, Seelecke S. Free energy model for hysteresis in magnetostrictive transducers[J]. Journal of Applied Physics, 2003, 93(1): 458-466.
[16] 滕峰成, 张昊阳, 程安迪, 等. 基于非线性遗传算法的DTS传感模型的参数辨识与优化 [J]. 计量学报, 2019, 40(4): 610-617.
Teng F C, Zhang H Y, Cheng A D, et al. Parameter Identification and Optimization of DTS Sensing Model based on Nonlinear Genetic Algorithm [J]. Acta Metrologica Sinica , 2019, 40(4): 610-617.
[17] 滕峰成, 王珊珊,杨雪璠, 等. 基于PSO算法的GMM改进J-A磁滞模型的参数辨识与验证[J]. 计量学报, 2021, 42(9): 1193-1199.
Teng F C, Wang S S,Yang X F, et al. Parameter Identification and Verification of Improved J-A Hysteresis Model of GMM Based on PSO Algorithm [J]. Acta Metrologica Sinica , 2021, 42(9): 1193-1199.
[18] 张玉燕, 任天昕, 温银堂, 等. 复合材料胶层光纤布格光栅应变监测优化配置研究 [J]. 计量学报, 2018, 39(2): 168-172.
Zhang Y Y, Ren T X, Wen Y T, et al. Strain Measurement and Optimal Placement of Fiber Bragg Sensors in Adhesive Layer of Composites[J]. Acta Metrologica Sinica, 2018, 39(2): 168-172. |
|
|
|