|
|
Design and Uncertainty Evaluation for New Blackbody Source |
LIU Pei1,YANG Xue2,WANG Jing-hui2,HU Die1,ZHANG Xin1,XU Biao1 |
1. Guangdong Provincial Institute of Metrology, Guangzhou, Guangdong 510405, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In order to enhance the heat transfer between the blackbody cavity and the heat carrier, a new design of cavity blackbody source with passive spoiler is proposed. With the newly designed micro-disturbance structure on the outer wall of the cavity, the thermal boundary layer of the working fluid is disturbed to destroy and regenerate, so the heat transfer is enhanced by the principle of high heat transfer intensity in the initial section of the thermal boundary layer. The new design can not only improve the heat transfer coefficient, but also increase the heat transfer area, which can reduce the time required for the cavity and the heat carrier to achieve thermal balance. The experimental study and uncertainty evaluation of the new blackbody radiation source of the ear thermometer are carried out. The results show that the expanded uncertainty of the new design cavity blackbody is U=0.05℃(k=2), and the equilibration time can be reduced by more than 15%.
|
Received: 25 August 2021
Published: 23 February 2022
|
|
|
|
|
[1]汪洪军, 柏成玉, 王景辉, 等. 红外测温仪在应对新冠疫情中的应用 [J]. 中国计量, 2020(5): 17-20.
[2]刘裕盛, 蔡静. 改进型封装固定点黑体的辐射测温应用[J]. 计量学报, 2021, 42(9): 1149-1154.
Liu Y S, Cai J. Application of Improved Encapsulated Fixed Point Blackbody in Radiation Thermometry[J]. Acta Metrologica Sinica. , 2021, 42(9): 1149-1154.
[3]董磊, 蔡静, 孟苏. 浴式黑体辐射源校准方法研究[J]. 计测技术, 2015, 35(1): 33-37.
Dong L, Cai J, Meng S, Research on Calibration Methods of Bath Blackbody Source, Metrology and Measurement Technology, 2015, 35(1): 33-37.
[4]蔡露露, 田海霞, 吴飞, 等. 高温黑体空腔有效发射率的计算[J]. 计量学报, 2016, 37(6): 602-605.
Cai L L, Tian H X, Wu F, et al. Calculate on Effective Emissivity of High-temperature Blackbody Cavity[J]. Acta Metrologica Sinica, 2016, 37(6): 602-605.
[5]Planck M. On the law of distribution of energy in the normal spectrum[J]. Annalen der Physik, 1901(4): 553-559.
[6]沈久利, 邢婷婷, 吴飞. 基于monte-Carlo法的圆锥形黑体有效发射率的研究[J]. 计量学报, 2018, 39(3): 359-362.
Shen J L, Xing T T, Wu F. Research on the Effective Emissivity of conical Blackbody Cavity Based on Monte-Carlo Method[J]. Acta Metrologica Sinica, 2018, 39(3): 359-362.
[7]扈又华, 郝小鹏, 司马瑞衡, 等. 大口径高发射率面型黑体辐射源的研制[J]. 计量学报, 2021, 42(3): 314-320.
Hu Y H, Hao X P, Sima R H, et al. Development of Large-aperture and high-emissivity Surface Blacbody Radiation Source[J]. Acta Metrologica Sinica, 2021, 42(3): 314-320.
[8]段宇宁. 黑体辐射源研究综述[J]. 现代计量测试, 2001(3): 6-11.
[9]Dong Z Q, Xu J L, Jiang F M, et al. Numerical study of vapor bubble effect on flow and heat transfer in microchannel[J]. International Journal of Thermal Sciences, 2012, 54: 22-32.
[10]蒋方明, 刘培, 刘伟. 一种新型平面微通道换热器: ZL 2014102314338[P]. 2016-01-20.
[11]JJG 1164—2019红外耳温计[S]. 2019.
[12]柏成玉. JJG 1164—2019《红外耳温计检定规程》解读[J]. 中国计量, 2020 (3): 124-126.
[13]JJF 1059.1—2012测量不确定度评定与表示[S]. 2012.
[14]柏成玉, 原遵东, 王铁军. 红外耳温计的校准[J]. 计量技术, 2007(4): 46-49.
[15]李松林. 非接触人体表面温度测量方法的研究[D]. 天津:天津大学, 2005.
[16]周四清, 吴双双, 张莉群, 等. 人体红外温度计校准装置设计与验证[J]. 中国计量, 2016(12): 71-72. |
|
|
|