|
|
Development of Vacuum Gallium Fixed-point Blackbody |
SONG Jian1,HAO Xiao-peng1,HU Chao-yun1,ZHOU Jing-jing1,2,YANG Yan-long1,3,LIU Yang1,XIE Chen-yu1 |
1. National Institute of Metrology, Beijing 100029, China
2. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
3. College of Nuclear Technology and Automation Engineering,Chengdu University of Technology, Chengdu, Sichuan 610059 , China |
|
|
Abstract The vacuum gallium fixed-point blackbody radiation source is developed to meet the requirements of radiometric calibration on the infrared remote sensing payload and achieve effective traceability of radiation values to ITS-90. The diameter of the blackbody cavity opening is 25mm, the depth of the cavity is 220mm. The cavity is coated with high emissivity coating. The emissivity of the blackbody is calculated to be 0.9999. The repeatability of the gallium fixed-point phase change plateau is measured under vacuum, the result is 4.4 mK. The stability of the plateau is better than 2 mK. The radiance temperature of the blackbody is measured, and the average radiance temperature in the wavelength range of 8~16 μm is 302.905 K. the influence of the circulating fluid temperature on the plateau and the radiance temperature of blackbody is studied. The combined standard uncertainty of the gallium fixed-point blackbody is analyzed, the result is 0.014K.
|
Received: 26 January 2021
Published: 23 February 2022
|
|
|
|
|
[1]孟鹏, 胡勇, 巩彩兰, 等. 热红外遥感地表温度反演研究现状与发展趋势[J]. 遥感信息, 2012, 27(6): 118-132.
Meng P, Hu Y, Gong C L, et al. Thermal Infrared Remote Sensing of Surface Temperature Inversion: Current Status and Future Prospects[J]. Remote Sensing Information, 2012, 27(6): 118-132.
[2]甘甫平, 陈伟涛, 张绪教, 等. 热红外遥感反演陆地表面温度研究进展[J]. 国土资源遥感, 2006 (1): 6-11.
Gang F P, Chen W T, Zhang X J, et al. The Progress in the Study of Thermal Infrared Remote Sensing for Retrieving Land Surface Temperature[J]. Remote Sensing For Land & Resources, 2006 (1): 6-11.
[3]原民辉, 刘韬. 空间对地观测系统与应用最新发展[J]. 国际太空, 2018 (4): 10-17.
[4]卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术[J]. 遥感学报, 2020, 24(6): 672-680.
Lu N M, Ding L, Zheng X B, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing[J]. Journal of Remote Sensing, 2020, 24(6): 672-680.
[5]Brindley H E , Bantges R J. The Spectral Signature of Recent Climate Change[J]. Current Climate Change Reports, 2016, 2: 112-126.
[6]Anderson J G, Dykema J A, Goody M R, et al. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 85(3): 367-383.
[7]Dykema J A, Anderson J G. A methodology for obtaining on-orbit SI-traceable spectral radiance measurements in the thermal infrared[J]. Metrologia, 2006, 43(3): 287-293.
[8]Hao X P, Song J, Xu M, et al. Vacuum radiance temperature standard facility for infrared remote sensing at NIM [J]. International Journal of Thermophysics, 2018, 39(6): 78.
[9]宋 健, 郝小鹏, 丁雷, 等. 真空低背景红外高光谱亮温计量标准装置研制[J]. 红外与激光工程, 2019, 48(10): 1004001.
Song J, Hao X P, Ding L, et al. Development of reduced background vacuum infrared hyperspectral radiance temperature standard facility[J]. Infrared and Laser Engineering, 2019, 48(10): 1004001.
[10]李凯, 郝小鹏, 宋健, 等. 真空汞固定点黑体辐射源的设计与研制[J]. 计量学报, 2020, 41(4): 413-418.
Li K, Hao X P, Song J, et al. Design and Development of Vacuum Mercury Fixed PointBlackbody Radiation Source[J]. Acta Metrologica Sinica, 2020, 41(4): 413-418.
[11] 杨延龙,郝小鹏,宋健,等. 中温区真空标准黑体辐射源研制[J].计量学报, 2021, 42(2): 129-136.
Yang Y L,Hao X P,Song J, et al. Development of Vacuum Standard Blackbody Radiation Source in Middle Temperature Zone[J]. Acta Metrologica Sinica, 2021, 42(2): 129-136.
[12] 扈又华, 郝小鹏, 司马瑞衡, 等. 大口径高发射率面型黑体辐射源的研制[J]. 计量学报, 2021, 42(3): 314-320.
Hu Y H, Hao XP, Sima R H, et al. Development of Large-aperture and High-emissivity Surface Blackbody Radiation Source[J]. Acta Metrologica Sinica, 2021, 42(3): 314-320.
[13]舒心, 郝小鹏, 宋健, 等. 100~400 K真空红外亮温标准黑体辐射源研制[J]. 计量学报, 2019, 40(1): 13-19.
Shu X, Hao X P, Song J, et al. Research of 100~400 K Vacuum Infrared Radiance Temperature Standard Blackbody Source[J]. Acta Metrologica Sinica, 2019, 40(1): 13-19.
[14]Khromchenko V B, Mekhontsev S N, Hanssen L M. Design and Evaluation of Large-Aperture Gallium Fixed-Point Blackbody[J]. Int J Thermophys, 2009, 30(9): 19.
[15]Ogarev S A, Morozova S P, Katysheva A A, et al. Blackbody radiation sources for the IR spectral range[C]//9th International Temperature Symposium on Temperature-Its Measurement. 2013, 1552(1):654-659.
[16]Ivanov V S, Lisiansky B E, Morozova S P, et al. Medium-background radiometric facility for calibration of sources or sensors[J]. Metrologia, 2000, 37(5): 599-602.
[17]Monte C, Gutschwager B, Morozova S P, et al. Radiation thermometry and emissivity measurements under vacuum at the PTB[J]. International Journal of Thermophysics, 2009, 30(1): 203-219.
[18]Adibekyan A, Kononogova E, Monte C, et al. High-Accuracy Emissivity Data on the Coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6): 89.
[19]Sapritsky V I, Prokhorov A V. Calculation of the Effective Emissivities of Specular-Diffuse Cavities by the Monte Carlo Method[J]. Metrologia, 1992, 29(1): 9-14.
[20]Song J, Hao X P, Yuan Z D, et al. Research of Ultra-Black Coating Emissivity Based on a Controlling the Surrounding Radiation Method[J]. International Journal of Thermophysics, 2018, 39(7): 85-95.
[21]Saunders P, Fischer J, Sadli M, et al. Uncertainty Budgets for Calibration of Radiation Thermometers below the Silver Point[J]. International Journal of Thermophysics, 2008, 29(3): 1066-1083. |
|
|
|