|
|
Device Construction and Method Research of Biological Counting Evaluation of Bioaerosol Detectors |
TIAN Ying1,2,ZHANG Guo-cheng1,WU Dan1,LIU Jia-qi1,SHEN Shang-yi1,PAN Yi-ting1,LI Jing-jing1 |
1.Beijing Institute of Metrology, Beijing 100029, China
2.College of Environmental Sciences and Engineering,Peking University, Beijing 100871, China |
|
|
Abstract The bioaerosol detector monitors the existence and quantity of biological particles based on the principle of laser-induced fluorescence, and its development is of great significance to the early warning of public health and national defense security. Through designing and constructing a calibration device, the colony counting method is used to evaluate the key technical indicators of the bioaerosol detector after nebulizing the bacteria liquid,and the effects of bacterial species, bacterial solution concentration and fluorescence intensity on the monitoring results are studied. The results show that bioaerosol produced in the calibration device is sufficiently uniform and stable. The aerosol concentration is determined by the colony counting method, and the calibration of the bioaerosol detectors is initially realized.
|
Received: 08 March 2021
Published: 06 December 2021
|
|
|
|
|
[1]Douwes J, Thorne P, Pearce N, et al. Bioaerosol health effects and exposure assessment: progress and prospects[J]. The Annals of occupational hygiene, 2003, 47(3): 187-200.
[2]Wei K, Zheng Y H, Li J, et al. Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions[J]. Science Bulletin, 2015, 60(16): 1439-1447.
[3]Xu Z Q, Wu Y, Shen F X, et al. Bioaerosol Science, Technology, and Engineering: Past, Present, and Future[J]. Aerosol Science and Technology, 2011, 45(11) : 1337-1349.
[4]张永卓, 王晶, 傅博强, 等. 2019新型冠状病毒的核酸检测[J]. 计量学报, 2020, 41(4): 393-398.
Zhang Y Z, Wang J, Fu B Q, et al. Nucleic Acid Detection of the SARS-CoV-2. [J]. Acta Metrologica Sinica, 2020, 41(4): 393-398.
[5]Mainelis G. Bioaerosol sampling: Classical approaches, advances, and perspectives[J]. Aerosol Science and Technology, 2019, 54(5): 1-36.
[6]Chen H X, Yao M S. A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial detection[J]. Journal of Aerosol Science, 2018, 117,doi:10.1016/j.jaerosci.2017.11.012
.
[7]Thanh D V, Xuan D T, Canh-Dung T, et al. Particle precipitation by bipolar corona discharge ion winds[J]. Journal of Aerosol Science, 2018, 124: 83-94.
[8]Han T T, Thomas N M, Mainelis G. Design and development of a self-contained personal electrostatic bioaerosol sampler (PEBS) with a wire-to-wire charger[J]. Aerosol Science and Technology, 2017, 51(8): 1-13.
[9]Zheng Y H, Yao M S. Liquid impinger BioSampler's performance for size-resolved viable bioaerosol particles[J]. Journal of Aerosol Science, 2017, 106: 34-42.
[10]李笑楠, 冉斌, 吴文健, 等. 荧光光谱技术在生物气溶胶监测中的应用进展[J]. 军事医学, 2018, 42(6): 464-470.
Li X N, Ran B, Wu W J, et al. Advances in fluorescence spectroscopic monitoring of biological aerosol[J]. Military Medical Sciences, 2018, 42(6): 464-470.
[11]樊凤杰, 轩凤来,白洋,等. 基于LLE-RF的中药三维荧光光谱分类识别[J]. 计量学报, 2020, 41(2): 263-268.
Fan F J, Xuan F L, Bai Y,et al. Advances in fluorescence spectroscopic monitoring of biological aerosol[J]. Acta Metrologica Sinica, 2020, 41(2): 263-268.
[12]Brosseau L M, Vesley D, Rice N, et al. Differences in Detected Fluorescence Among Several Bacterial Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector[J]. Aerosol Science and Technology, 2000, 32(6) : 545-558.
[13]Huffman J A, Perring A E, Savage N J, et al. Real-time sensing of bioaerosols: Review and current perspectives[J]. Aerosol Science and Technology, 2020, 54(5): 465-495.
[14]潘一廷, 张国城, 杨振琪, 等. 生物气溶胶监测仪校准方法的研究[J]. 中国测试, 2020, 46(10): 18-22.
Pan Y T, Zhang G C, Yang Z Q, et al. Research on calibration method of bioaerosol monitor instrument[J]. China Measurement& Testing Technology, 2020, 46(10): 18-22.
[15]吴丹,张国城,赵晓宁. 光散射法颗粒物监测仪粒径识别检测装置的搭建及方法研究[J]. 计量学报, 2021, 42(3): 388-394.
Wu D, Zhang G C, Zhao X N. Research on Construction and Method of Particle Size Recognition and Detection Device for Light Scattering Particles Monitor[J]. Acta Metrologica Sinica, 2021, 42(3): 388-394.
[16]Wang D B, Pakbin P, Saffari A, et al. Development and Evaluation of a High-Volume Aerosol-into-Liquid Collector for Fine and Ultrafine Particulate Matter[J]. Aerosol Science and Technology, 2013, 47(11): 1226-1238.
[17]Lin X J, Reponen T, Willeke K, et al. Survival of Airborne Microorganisms During Swirling Aerosol Collection[J]. Aerosol Science and Technology, 2000, 32(3): 184-196.
[18]Kanaani H, Hargreaves M, Smith J, et al. Performance of UVAPS with respect to detection of airborne fungi[J]. Journal of Aerosol Science, 2008, 39(2): 175-189.
[19]Kanaani H, Hargreaves M, Ristovski Z, et al. Performance assessment of UVAPS: Influence of fungal spore age and air exposure[J]. Journal of Aerosol Science, 2007, 38(1): 83-96. |
|
|
|