[1]汲继跃, 佘青山, 张启忠, 等. 最优区域共空间模式的运动想象脑电信号分类方法[J]. 传感技术学报, 2020, 33(1): 38-43.
Ji J Y, She Q S, Zhang Q Z, et al. Classification of motor imagery EEG signals based on optimal regional co spatial pattern[J]. Journal of sensing technology, 2020, 33(1): 38-43.
[2]徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016, 33(2): 201-207.
Xu J L, Zuo G K. Feature selection algorithm of motor imagery EEG based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201-207.
[3]汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
Wang C H, Cai J H, Zeng j S. Research on rolling bearing fault diagnosis based on empirical mode decomposition and principal component analysis[J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[4]Lu H, Plataniotis K N, Venetsanopoulos A N. MPCA: Multilinear Principal Component Analysis of Tensor Objects[J]. IEEE Trans Neural Network, 2008, 19(1): 18-39.
[5]王月茹, 李昕, 李红红, 等. 基于时-频-空间域的运动想象脑电信号特征提取方法研究[J]. 生物医学工程学杂志, 2014, 31(5): 955-961.
Wang Y R, Li X, Li H H, et al. Research on feature extraction method of motor imagery EEG signal based on time frequency space domain[J]. Journal of Biomedical Engineering, 2014, 31(5): 955-961.
[6]李继猛, 王慧, 李铭, 等. 基于改进的自适应无参经验小波变换的滚动轴承故障诊断[J]. 计量学报, 2020, 41(6): 710-716.
Li J M, Wang H, Li M, et al. Rolling bearing fault diagnosis based on improved adaptive nonparametric empirical wavelet transform[J]. Acta metrologica Sinica, 2020, 41(6): 710-716.
[7]王金甲, 杨亮. 脑机接口中多线性主成分分析的张量特征提取[J]. 生物医学工程学杂志, 2015, 32(3): 36-40.
Wang J J, Yang L. Tensor feature extraction of multi linear principal component analysis in brain computer interface[J]. Journal of Biomedical Engineering, 2015, 32(3): 36-40.
[8]郑慧峰, 曹文旭, 王月兵, 等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620.
Zheng H F, Cao W X, Wang Y B, et al. Nonlinear acoustic field detection of focused ultrasound based on empirical mode decomposition[J]. Acta Metrologica Sinica, 2017, 38(5): 616-620.
[8]何群,杜硕,王煜文, 等. 基于变分模态分解与深度信念网络的运动想象分类识别研究[J]. 计量学报, 2020, 41(1): 90-99.
He Q, Du S, Wang Y W, et al. The Classification of EEG Induced by Motor Imagery Based on Variational Mode Decomposition and Deep Belief Network[J]. Acta Metrologica Sinica, 2020, 41(1): 90-99.
[9]Zheng J D, Cheng J S, Yang Y. Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013, 32(21): 21-26.
[10]田晶, 王英杰, 王志, 等. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39(7): 144-151.
Tian J, Wang Y J, Wang Z, et al. Rolling bearing fault diagnosis method based on EEMD and airspace related noise reduction[J]. Acta Instrumenta Sinica, 2018, 39 (7): 144-151.
[11]Helske J. Rlibeemd: Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)[J]. International Journal of Public Health, 2016, 60(5): 1-9.
[12]Jian Y, David Z, Frangi A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. [J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(1): 131-137.
[13]Asi Z U, Sultan M, Muneer U, et al. Classification of Non-Discriminant ERD/ERS Comprising Motor Imagery Electroencephalography Signals[J]. International Journal of Advanced Computer ence and Applications, 2020, 11(1): 364-375.
[14]朱嘉祺. 分布式脑电信号采集系统研究[J]. 仪器仪表学报, 2020, 27(1): 6-9.
Zhu J Q. Research on distributed EEG signal acquisition system[J]. Acta Instrumenta Sinica,2020,27(1):6-9.
[15]Boudraaa O, Cexus J C. EMD-based Signal Filtering[J]. IEEE Transactions on Instrumentation & Measurement, 2007, 56(6): 2196-2202.
[16]王志芳, 王书涛, 王贵川, 等. 基于小波优化EEMD的二氧化硫检测[J]. 计量学报, 2020, 41(6): 752-758.
Wang Z H, Wang S T, Wang G C, et al. Sulfur dioxide detection based on wavelet optimized EEMD[J]. Acta Metrologica Sinica, 2020, 41(6): 752-758.
[17]樊凤杰,白洋,纪会芳. 基于EEMD-ICA的脑电去噪算法研究[J]. 计量学报, 2021, 42(3): 395-400.
Fen F J, Bai Y, Ji H F. Denoising Method of EEG Signal Based on EEMD-ICA[J]. Acta Metrologica Sinica, 2021, 42(3): 395-400.
[18]付荣荣,米瑞甫,王涵, 等. 基于脑功能网络的脑疲劳状态检测研究[J]. 计量学报, 2021, 42(11): 1528-1533.
Fu R R, Mi R F, Wang H, et al. Research on Fatigue Driving Recognition Based on Brain Function Network[J]. Acta Metrologica Sinica, 2021, 42(11): 1528-1533. |