|
|
Research on Fatigue Driving Recognition Based on Brain Function Network |
FU Rong-rong1,MI Rui-fu1,WANG Han1,YU Bao1,WANG Lin2 |
1. School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. School of Mechanical Engineering, Shenyang Institute of Engineering, Shenyang, Liaoning 110136, China |
|
|
Abstract To effectively identify the drivers fatigue status, a real highway driving experiment is conducted. Collecting multi-channel electroencephalograph (EEG) of drivers at different times through wireless EEG acquisition equipment. Based on the phase lag index, an adjacency matrix and a binary matrix are established. A brain function network and its corresponding topographic map are obtained. The complex network theory is used to calculate and analyze the characteristic parameters of the brain function network node-degree and compare the node degree at different moments. According to the variation trend of each node degree and the driver's subjective judgment, it is found that as the driving experiment continues, the degree of driving fatigue increases, the information processing ability of the brain decreases, and the decrease trend of phase lag index value and the node degree is obvious. It shows that the degree of brain function network can be used as an objective index of brain fatigue. Through comparison with other detection methods, it is obtained that using the node degree as the evaluation index of brain fatigue is more reliable.
|
Received: 12 May 2020
Published: 01 December 2021
|
|
Fund:;China Postdoctoral Science Foundation |
|
|
|
[1]杨硕, 艾娜, 王磊, 等. 脑疲劳状态的脑功能网络特征分类研究[J]. 生物医学工程学杂志, 2018, 35(2): 171-175.
Yang S, Ai N, Wang L, et al. Classification of brain function networks in brain fatigue [J]. Journal of biomedical engineering, 2018, 35(2): 171-175.
[2]付荣荣, 鲍甜恬, 田永胜, 等. 基于子成分分解的脑电信号去噪方法比较研究[J]. 计量学报, 2019, 40(4): 708-713.
Fu R R, Bao T T, Tian Y S, et al. Comparative Study on Denoising Methods of EEG Signals Based on Subcomponent Decomposition [J]. Acta Metrologica Sinica, 2019, 40(4): 708-713.
[3]楚文慧, 吴超仲, 张晖, 等. 基于个性化行为模型的驾驶疲劳识别方法[J]. 中国安全科学学报, 2018,(6): 43-48.
Chu W H, Wu C Z, Zhang H, et al. Driver fatigue recognition method based on personalized behavior model [J]. Chinese Journal of Safety Science, 2018,(6): 43-48.
[4]李响, 李国正, 石俊刚, 等. 基于语音心理声学分析的驾驶疲劳检测[J]. 仪器仪表学报, 2018, 39(10): 166-175.
Li X, Li G Z, Shi J G, et al. Driving fatigue detection based on voice psychoacoustic analysis [J]. Chinese Journal of Scientific Instrument, 2018, 39 (10): 166-175.
[5]李一兵, 孙岳霆, 徐成亮. 基于交通事故数据的汽车安全技术发展趋势分析[J]. 汽车安全与节能学报, 2016, 7(3): 241-253.
Li Y B, Sun Y T, Xu C L. Analysis of the development trend of automobile safety technology based on traffic accident data [J]. Journal of Automotive Safety and Energy Conservation, 2016, 7 (3): 241-253.
[6]于向洋, 罗志增. 基于小波系数非线性连续函数衰减的脑电信号去噪[J]. 计量学报, 2017, 38(6): 754-757.
Yu X Y, Luo Z Z. EEG signal denoising based on a wavelet nonlinear continuous function [J]. Acta Metrologica Sinica, 2017, 38(6): 754-757.
[7]Ahirwal M K, Kumar A, Singh G K. Improved range selection method for evolutionary algorithm based adaptive filtering of EEG/ERP signals [J]. Neurocomputing, 2014, 144(1): 282-294.
[8]何群, 杜硕, 王煜文, 等. 基于变分模态分解与深度信念网络的运动想象分类识别研究[J]. 计量学报, 2020, 41(1): 90-99.
He Q, Du S, Wang Y W, et al. The Classification of EEG Induced by Motor Imagery Based on Variational Mode Decomposition and Deep Belief Network [J]. Acta Metrologica Sinica, 2020, 41(1): 90-99.
[9]Saroj K L, Ashley C. Reproducibility of the spectral components of the electroencephalogram during driver fatigue[J]. International Journal of Psychophysiology, 2005, 55: 137-143.
[10]王炳浩, 魏建勤, 吴永红. 汽车驾驶员瞌睡状态脑电波特性的初步探索[J]. 汽车工程, 2004, 26(1): 70-73.
Wang B H, Wei J Q, Wu Y H. A preliminary study on brain wave characteristics of drowsy state in automobile drivers [J]. Journal of automotive engineering, 2004, 26(1): 70-73.
[11]张立国, 张玉曼, 金梅, 等. 基于盲源分离的运动想象脑电信号特征提取方法的研究[J]. 计量学报, 2015, 36(5): 535-539.
Zhang L G, Zhang Y M, Jin M, et al. A Research on the Method of Motor Imagery EEG Feature Extraction Based on Blind Source Separation [J]. Acta Metrologica Sinica, 2015, 36(5): 535-539.
[12]Masaaki T, Akira I, Yasuyoshi W. Neural effect of mental fatigue on physical fatigue: A magnetoencephalography study[J]. Brain Research, 2014, 1542(2): 49-55.
[13]温洪, 郭浩, 李越, 等. 重度抑郁症患者脑功能网络的分类研究[J]. 计算机应用研究, 2013, 30(8): 2304-2307.
Wen H, Guo H, Li Y, et al. Classification of brain function networks in patients with major depression [J]. Application Research of Computers, 2013, 30(8): 2304-2307.
[14]高振海, 段立飞, 赵会, 等. 基于生理信号的多任务下驾驶员认知负荷的评定[J]. 汽车工程, 2015,(1): 33-37.
Gao Z H, Duan L F, Zhao H, et al. Evaluation of drivers cognitive load under multi-task based on physiological signals [J]. Automotive Engineering, 2015,(1): 33-37.
[15]靳静娜, 王欣, 林雨, 等. rTMS联合运动训练对静息态脑网络影响的研究[J]. 中国生物医学工程学报, 2018, 37(3): 290-296.
Jin J N, Wang X, Lin Y, et al. The Effects of rTMS Combined with Motor Training on Brain Network in Resting Status [J]. Chinese Journal of Biomedical Engineering, 2018, 37 (3): 290-296.
[16]Fu R R, Wang H, Zhao W B. Dynamic driver fatigue detection using hidden markov Model in real driving condition [J]. Expert Systems with Applications, 2016, 63 (6): 397-411. |
|
|
|