|
|
Review on the Research Progress of Electromagnetic Metrology |
HE Qing,SHAO Hai-ming,LIANG Cheng-bin |
National Institute of Metrology, Beijing 100029, China |
|
|
Abstract On May 20, 2019, the SI actualized that the seven basic units were based on the basic physical constants, and the measurement system ushered in the major reform of “quantized unit of measurement” and “flat value transfer”. Electromagnetic metrology occupies an extremely important position in the field of metrology. It is of great significance to carry out research on electromagnetic measurement to maintain the advanced quality of value transmission and promote the new development of metrology. The basic characteristics of electromagnetic measurement were introduced, its research status in quantum standards and chips, Joule balance, AC electricity metering, AC impedance and ratio metering, high voltage metering, and magnetic parameter measurement were summarized. Finally, the development trend of electromagnetic measurement was prospected.
|
Received: 30 March 2021
Published: 01 December 2021
|
|
|
|
|
[1]Rufenacht A, Howe L, Fox A E, et al. Cryocooled 10 V Programmable Josephson Voltage Standard[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(6): 1477-1482.
[2]Benz S P, Waltman S B, Fox A E, et al. One-Volt Josephson Arbitrary Waveform Synthesizer[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(1): 1-8.
[3]Kieler O F, Behr R, Wendisch R, et al. Towards a 1 V Josephson Arbitrary Waveform Synthesizer[J]. IEEE Transactions on Applied Superconductivity, 2014, 25(3): 1-5.
[4]Solve S, Chayramy R, Maruyama M, et al. Direct DC 10V comparison between two programmable Josephson voltage standards made of niobium nitride (NbN)-based and niobium (Nb)-based Josephson junctions[J]. Metrologia, 2018, 55(2): 302-313.
[5]Wang Z, Li H, Yan Y, et al. Research on differential sampling with a Josephson voltage standard[C]//IEEE. Precision Electromagnetic Measurements. 2016.
[6]Wang Z, Li H, Yang Y, et al., Progress on AC Voltage Measurement System with Josephson Voltage Standard[C]//IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). 2018.
[7]Li H, Yuan G, Wang Z. A differential programmable Josephson voltage standard for low-measurement[C]//IEEE.2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). 2016.
[8]Li H, Wang Z, Cao W, et al. The development of differential programmable Josephson voltage standard toward quantum voltmeter with microvolt range[C]//IEEE.2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 2018.
[9]Yuan G, Li H, Wang Z. Mutual inductance measurement with programmable Josephson system[C]//IEEE. 2014 Conference on Precision Electromagnetic Measurements (CPEM 2014). 2014.
[10]Mattias K, Elmquist R E. Epitaxial graphene for quantum resistance metrology[J]. Metrologia, 2018, 55(4): 27-36.
[11]Lafont F, Ribeiro-Palau R, Kazazis D, et al. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide[J]. Nature Communications, 2015,( 6 ):1-9.
[12]Cao W, Li J, Zhong Y, et al. Study of Nb/NbxSi1-x/Nb Josephson junction arrays[J]. Chinese Physics B., 2015, 24(12): 531-535.
[13]Wang L, Li J, Cao W, et al. The development of 0. 5 V Josephson junction array devices for the quantum voltage standards[J]. Chinese Physics B., 2019, 28(6): 068501.
[14]Wang X, Zhong Q, Li J, et al. Quantum Hall devices for the primary resistance standard based on the GaAs/AlxGa1-xAs heterostructure[J]. International Journal of Modern Physics B., 2019, 33(8): 1950057.
[15]钟青, 王雪深, 李劲劲, 等. 1 kΩ量子霍尔阵列电阻标准器件研制[J]. 物理学报, 2016, 65(22): 271-276.
Zhong Q, Wang X S, Li J J, et al. A 1 kΩ standardresistor device based on quantum Hall array [J]. Acta Physica Sinica, 2016, 65(22): 271-276.
[16]Tzalenchuk A, Lara-Avila S, Kalaboukhov A, et al. Towards a quantum resistance standard based on epitaxial graphene[J]. Nature Nanotechnology, 2010, 5(3): 186-189.
[17]Janssen T J B M, Rozhko S, Antonov I, et al. Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system[J]. 2D MATERIALS, 2015, 2:035015.
[18]Yang Y, Cheng G, Mende P, et al. Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices[J]. Carbon, 2017, 115: 229-236.
[19]Lafont F, Ribeiro-Palau R, Kazazis D, et al. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide[J]. Nat Commun, 2015, 6: 6806.
[20]Luond F, Kalmbach C, Overney F, et al. AC Quantum Hall Effect in Epitaxial Graphene[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(6): 1459-1466.
[21]孙丽, 陈秀芳, 张福生, 等. 光电化学刻蚀方法去除SiC衬底外延石墨烯缓冲层及其表征[J]. 化工学报, 2016, 67(10): 4356-4362.
Sun L, Chen X F, Zhang F S, et al. Photo-electrochemical removal of graphene buffer layer on SiC substrate[J]. CIESC Journal, 2016, 67(10): 4356-4362.
[22]Wang X, Li J, Zhong Q, et al. Thermal Annealing of Exfoliated Graphene[J]. Journal of Nanomaterials, 2013, (5): 1-6.
[23]Wang X, Zhong Q, Li J, et al. WR-06 Power Standard Devices[C]// IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018).2018.
[24]Robinson I A, Schlamminger S. The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass[J]. Metrologia, 2016, 53(5): A46-A74.
[25]Li Z, Yang B, Xu J, et al. The Improvements of the NIM-2 Joule Balance[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2208-2214.
[26]Zhengkun L, Zhonghua Z, Yunfeng L, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 763-774.
[27]白洋, 王大伟, 李正坤, 等. 能量天平悬挂系统初始位姿识别方法[J]. 计量学报, 2020, 41(3): 273-278.
Bai Y, Wang D W, Li Z K, et al. Recognition of Initial Position and Posture of Suspended Coil in Joule Balance[J]. Acta Metrologica Sinica, 2020, 41(3): 273-278.
[28]任飞安, 许金鑫, 由强, 等. 能量天平永磁体系统的温度场分析[J]. 计量学报, 2019, 40(3): 353-360.
Ren F A, Xu J X, You Q, et al. Thermal Analysis of Permanent-Magnet System in the Joule Balance[J]. Acta Metrologica Sinica, 2019, 40(3): 353-360.
[29]Georgakopoulos D, Budovsky I, Benz S P. AC Voltage Measurements to 120V with a Josephson Arbitrary Waveform Synthesizer and an Inductive Voltage Divider[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1935-1940.
[30]Jia Z, Liu Z, Wang L, et al. Design and implementation of differential AC voltage sampling system based on PJVS[J]. Measurement, 2018, 125: 606-611.
[31]Pan X, Zhang J, Shi Z, et al. Establishment of AC power standard at frequencies up to 100 kHz[J]. Measurement, 2018, 125: 151-155.
[32]Shi Z, Zhang J, Pan X, et al. Self-Calibration of the Phase Angle Errors of RVDs at Frequencies Up to 100kHz[J]. IEEE Transactions on Instrumentation & Measurement, 2018, 63(3): 593-599.
[33]Huang H, Lu Z, Lei W, et al. Dynamical waveforms and the dynamical source for electricity meter dynamical experiment[C]//IEEE. 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). 2016.
[34]李涛永, 薛金会, 闫华光, 等. 一种电动汽车充放电设施现场能效测试方法研究[C]//第十四届中国科协年会第19分会场: 电动汽车充放电技术研讨会, 2012.
[35]Wang Z, Ma J, Zhang L. State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression[J]. IEEE Access, 2017, 5: 1-1.
[36]Wang Y, Chen Q, Hong T, et al. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3125-3148.
[37]Liu F, He Q, Hu S, et al. Estimation of Smart Meters Errors Using Meter Reading Data[C]//IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). 2018.
[38]Lu Z, Huang L, Yang Y, et al. An Initial Reproduction of SI Capacitance Unit from a New Calculable Capacitor at NIM[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(6): 1496-1502.
[39]Huang L, Yang Y, Lu Z, et al. Practical Application of Latest Optimal Hollow Active Auxiliary Electrode in Vertical Calculable Cross-Capacitor at NIM[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2144-2150.
[40]Gournay P, Rolland B, Chayramy R, et al. Comparison CCEM-K4. 2017 of 10 pF and 100 pF capacitance standards[J]. Metrologia, 2019, 56(1A):01001.
[41]Wei W, Yan Y, H Lu, et al. Establishing of a 1000 V Multi-decade Inductive Voltage Divider Standard at NIM[J]. IEEE Access, 2018, 6: 58594-58599.
[42]He X, Dai D, Jin P, et al. Development of High-Accuracy Standard Capacitors and Capacitance Box[J]. IEEE Transactions on Instrumentation & Measurement, 2016, 65(3): 666-671.
[43]黄璐, 杨雁, 陆祖良, 等. 采用电补偿方案的新一代立式计算电容装置[J]. 计量学报, 2020, 41(3): 279-283.
Huang L, Yang Y, Lu Z L, et al.The New Vertical Calculable Cross-capacitor by Adopting the Novel Electrical Compensation Approach[J]. Acta Metrologica Sinica, 2020, 41(3): 279-283.
[44]杨雁, 黄璐, 王维, 等. NIM新一代二端对电容电桥装置[J]. 计量学报, 2020, 41(3): 284-289.
Yang Y, Huang L, Wang W, et al. The New Two Terminal Pair Capacitance Bridge at NIM[J]. Acta Metrologica Sinica, 2020, 41(3): 284-289.
[45]Wang J, Shao H, He Q, et al. Measurement Analysis on Electric Power Parameters in Electrified Railway Traction Substations[C]// IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). 2018.
[46]孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12): 2764-2771.
Sun J R, Yao X L, Li Y F, et al. Damage properties of carbon fiber reinforced epoxy composite subjected to multiple continuous lightning current strikes[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2764-2771.
[47]Zhao W, Wang J, Li C, et al. Study on the Frequency Bandwidth Limits for Deconvolution of the Step Response[C]//IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). 2018.
[48]李传生, 邵海明, 赵伟, 等. 超大电流量值传递用光纤电流传感技术[J]. 红外与激光工程, 2017, 46(7): 114-120.
Li C S, Shao H M, Zhao W, et al. Fiber-optic current sensing technique utilized for ultra-high current value transfer[J]. Infrared and Laser Engineering, 2017, 46(7): 114-120.
[49]李传生, 赵伟, 王家福, 等. 直流光纤电流互感器谐波测量误差机理及改善[J]. 中国激光, 2017,(9): 263-269.
Li C S, Zhao W, Wang J F, et al. Harmonic Measurement Error Mechanism and Performance Improvement of Direct-Current Fiber-Optic Current Transformer [J]. Chinese Journal of Lasers, 2017,(9): 263-269.
[50]Newell D B, Cabiati F, Fischer J, et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI[J]. Metrologia, 2018, 55(1): 13-16.
[51]Shifrin V Y, Park P G. Final report on P1-APMP. EM-S9: VNIIM/KRISS bilateral comparison of DC magnetic flux density by means of a transfer standard coil[J]. Metrologia, 2013, 50(1A): 01006.
[52]Fu J, Wang H, Peng X, et al. A Laser-Pumped Cs-4He Magnetometer for Metrology[C]//IEEE. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). 2018.
[53]伏吉庆, 张伟, 贺青. 磁感应强度基准技术发展评述[J]. 计量学报, 2019. 40(4): 700-703.
Fu J Q, Zhang W, He Q.Review of the technologies of the magnetic flux density base standard[J]. Acta Metrologica Sinica, 2019. 40(4):700-703.
[53]伏吉庆, 张伟. 高准确度铯-氦光泵磁强计的粒子数密度配比研究[J]. 中国测试, 2018,42(2): 1-5.
Fu J Q, Zhang W. Research on the number density ratio of Cs/4He in the Cs-He optical magnetometer[J]. China Measurement& Testing Technology, 2018,42(2): 1-5.
[54]Andreas P, Roland L, Werner M, et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite[J]. Measurement Science and Technology, 2018,29(9): 095103.
[55]Orang A, Rahul M, Ricardo J M, et al. Magnetic field imaging with microfabricated optically-pumped magnetometers[J]. Optics Express, 2017, 25(7): 7849-7858. |
|
|
|