|
|
Coupling Error Modeling and Compensation of Transceiver Split Laser Four-degree-of-freedom Error Measurement System |
CHENG Zhen-ying1,2,MEI Han-bing1,2,LIU Xin1,2,LEI Ying-jun1,2,LI Rui-jun1,2 |
1. School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui230009, China
2. Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,Hefei University of Technology, Hefei, Anhui 230009, China |
|
|
Abstract Linear guide pairs are widely used in precision machine tools and instruments, and their kinematic accuracy directly affects the spatial positioning accuracy of the equipment in which they are located. Aiming at the earlier-developed transceiver split-type four-degree-of-freedom laser measurement system that can measure the straightness, pitch and yaw angle of the guide rail, but there is a problem of coupling interference between the straightness and angle measurement results, an error modeling and compensation method is proposed. The principle and structure of the laser measurement system are introduced, the main sources of the coupling error are determined and analyzed, and the compensation model of the coupling error is established by using the method of matrix optics and flush coordinate transformation. The results show that the straightness and angle measurement errors are reduced by more than 75% after the compensation using the proposed model. The proposed error modeling and compensation method not only helps to improve the accuracy of the four-degree-of-freedom laser measurement system, but also helps to reduce its cost.
|
Received: 19 July 2021
Published: 01 December 2021
|
|
|
|
|
[1]Schwenke H, Knapp W, Haitjema H, et al. Geometric error measurement and compensation of machines—An update[J]. CIRP Annals-Manufacturing Technology, 2008, 57(2): 660-675.
[2]Okafor A C, Ertekin Y M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics[J]. International Journal of Machine Tools & Manufacture, 2000, 40(8): 1199-1213.
[3]杜正春, 杨建国, 冯其波. 数控机床几何误差测量研究现状及趋势[J]. 航空制造技术, 2017, 60(6): 34-44.
Du Z C, Yang J G, Feng Q B. Research Status and Trend of Geometrical Error Measurement of CNC Machine Tools[J]. Aeronautical Manufacturing Technology, 2017, 60(6): 34-44.
[4]杨洋, 李明, 顾京君, 等. 混合教与学算法在空间直线度评定中的应用[J]. 计量学报, 2017, 39(1): 15-19.
Yang Y, Li M, Gu J J, et al. Application of Hybrid Teaching-learning-based Optimization Algorithm in Spatial Straightness Evaluation[J]. Acta Metrologica Sinica, 2017, 39(1): 15-19.
[5]张馨龙, 田光宇, 黄勇. 三轴正交机器人运动误差的建模与分析[J]. 计量学报, 2017, 38(4): 396-401.
Zhang X L, Tian G Y, Huang Y. Modeling and Analysis of Movement Error of Three Axis Orthogonal Robots[J]. Acta Metrologica Sinica, 2017, 38(4): 396-401.
[6]Kuang C F, Feng Q B, Zhang B, et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors & Actuators A Physical, 2005, 125(1): 100-108.
[7]Fan K C, Chen M J, Huang W M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3): 155-164.
[8]王汉斌, 黄垚, 薛梓, 等. 激光小角度基准测量不确定度评定[J]. 计量学报, 2019, 40(6): 970-974.
Wang H B, Huang Y, Xue Z, et al. Measurement Uncertainty Evaluation for the Laser Small Angle Primary Standard[J]. Acta Metrologica Sinica, 2019, 40(6): 970-974.
[9]施玉书, 张树, 连笑怡, 等. 毫米级纳米几何特征尺寸计量标准装置多自由度激光干涉计量系统[J]. 计量学报, 2020, 41(7): 769-774.
Shi Y S, Zhang S, Lian X Y, et al. Multi-DOF Laser Interferometry System for Metrological Standard Device for Nano-geometrical Characteristic Size in Millimeter Range[J]. Acta Metrologica Sinica, 2020, 41(7): 769-774.
[10]崔存星. 直线导轨激光六自由度几何运动误差同时测量方法与系统的研究[D]. 北京: 北京交通大学, 2016.
[11]Cui C X, Feng Q B, Zhang B. Compensation for straightness measurement systematic errors in six degree-of-freedom motion error simultaneous measurement system[J]. Applied Optics, 2015, 54(11): 3122-3131.
[12]毛文炜. 反射棱镜的制造误差与调整[J]. 清华大学学报(自然科学版), 1996, 36(10): 73-79.
Mao W W. Manufacture error and adjustment of reflecting prisms[J]. Journal of Tsinghua University (Sci & Tech), 1996, 36(10): 73-79.
[13]王学根, 孙煜, 贺永喜. 分光棱镜位置变化对自准直测角光管角度测量误差的影响[J]. 导弹与航天运载技术, 2017(1): 22-25.
Wang X G, Sun Y, He Y X. Influence on Autocollimation Angle Measuring Caused by Motion of Beam Splitting Prism[J]. Missiles & Space Vehicles, 2017(1): 22-25.
[14]程知己, 黄强先, 应前程, 等. 自准直测量系统中离焦误差分析及修正[J]. 中国测试, 2020, 46(5): 7-12.
Cheng Z J, Huang Q X, Ying Q C, et al. China Measurement & Test, 2020, 46(5): 7-12.
[15]Ekinci T O, Mayer J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools & Manufacture, 2007, 47(12-13): 1997-2004.
[16]由凤玲. 基于共路光束漂移补偿的五自由度误差同时测量方法的研究[D]. 北京: 北京交通大学, 2010.
[17]Xu P, Li R J, Chang Z X, et al. Development and verification of a high-precision laser measurement system for straightness and parallelism measurement[J]. Metrology & Measurement Systems, 2021,28(3):479-495.
[18]Lin P D. New Computation Methods for Geometrical Optics[M]. Singapore:Springer Singapore, 2013.
[19]Bryan J B. The Abbé principle revisited: An updated interpretation[J]. Precision Engineering, 1979, 1(3): 129-132.
[20]林虎, 薛梓, 杨国梁. 螺旋线基准装置测头挠曲误差标定[J]. 计量学报, 2017, 38(z1):35-38.
Lin H, Xue Z, Yang G L. Calibration of Probe Bending Error in Helix Measurement Standard[J]. Acta Metrologica Sinica, 2017, 38(z1):35-38.
[21]范光照, 周浩, 李瑞君. 微型迈克尔逊干涉仪系统[P]. 中国专利: CN 201410541855, 2015.
[22]匡萃方, 冯其波, 冯俊艳, 等. 四象限探测器用作激光准直的特性分析[J]. 光学技术, 2004, 30(4): 387-389.
Kuang C F, Feng Q B, Feng J Y, et al. Analyzing characteristic of the four-quadrant detector applied to laser alignment[J]. Optical Technique, 2004, 30(4): 387-389. |
|
|
|