|
|
Rolling Bearing Fault Diagnosis Based on Clustering by Fast Search and Find of Density Peaks Combined Otsu Method |
XING Ting-ting1,2,GUAN Yang1,SUN Deng-yun1,MENG Zong1,FAN Feng-jie1 |
1. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University,Qinhuangdao, Hebei 066004,China
2. Tangshan Polytechnic College,Tangshan, Hebei 063000, China |
|
|
Abstract To solve the problem of underdetermined blind separation,caused by unknown vibration sources and smaller number of observation signals, an improved method of clustering by fast search and find of density peaks (FSDPC) is proposed. Initially, the mixed signal is projected to the multi-dimensional space and then calculate each point density value, using the Otsu method following for density threshold segmentation so as to remove the influence of interference on the accuracy of clustering,and then determine the cluster center according to the data density peaks, to estimate the mixing matrix;finally utilizing L1 norm minimization to separate mixed signals,and the envelope spectrum analysis is carried to realize fault diagnosis. The FSDPC_Otsu method can estimate the mixed matrix under the condition of the unknown source number and the initial value of the cluster center, at the same time, the accuracy of the mixed matrix can be guaranteed. The experimental results show that the sparse component analysis of the FSDPC_Otsu can separate the multiple fault signals of the bearing and realize the fault diagnosis.
|
Received: 06 March 2020
Published: 01 December 2021
|
|
|
|
|
[1]张金凤, 李继猛, 杨莹, 等. 基于改进耦合增强随机共振的滚动轴承故障诊断 [J].计量学报, 2019, 40 (3): 385-391.
Zhang J F, Li J M, Yang Y, et al. Rolling bearing fault diagnosis based on improved coupling-enhanced stochastic resonance [J]. Acta Metrologica Sinica, 2019, 40 (3): 385-391.
[2]汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究 [J]. 计量学报, 2019, 40 (6): 1077-1082.
Wang C H, Cai J H, Zeng J S. Research on fault dia-gnosis of rolling bearing based on empirical mode decom-position and principal component analysis [J]. Acta Metrologica Sinica, 2019, 40 (6): 1077-1082.
[3]郝如江, 安雪君, 史云林. 基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究 [J]. 振动与冲击, 2019, 38 (8): 225-231, 262.
Hao R J, An X J, Shi Y L. Single-channel blind source separation based on EMD and CICA and its application to gearbox multi-fault diagnosis [J]. Journal of Vibration and Shock, 2019, 38 (8): 225-231, 262.
[4]Li G Z, Tang G, Wang H Q, et al. Blind source separation of composite bearing vibration signals with low-rank and sparse decomposition [J]. Measurement, 2019, 145: 323-334.
[5]Feng L J, Zhao C H, Huang B. A slow independent component analysis algorithm for time series feature extr-action with the concurrent consideration of high-order statistic and slowness [J]. Journal of Process Control, 2019, 84: 1-12.
[6]刘鲲鹏, 夏均忠, 白云川, 等. EDRS在滚动轴承振动信号盲源分离中的应用[J]. 振动与冲击, 2019, 38 (20): 106-111.
Liu K P, Xia J Z, Bai Y C, et al. Application of EDRS in blind source separation of rolling element bearing vibration signal [J]. Journal of Vibration and Shock, 2019, 38 (20): 106-111.
[7]孟宗, 王晓燕, 周明军, 等. 基于Gabor变换和盲源分离的旋转机械故障诊断方法 [J]. 计量学报, 2016, 37 (5): 499-504.
Meng Z, Wang X Y, Zhou M J, et al. Method of rotating machinery fault diagnosis based on Gabor transform and blind source separation[J]. Acta Metrologica Sinica, 2016, 37 (5): 499-504.
[8]Kang T, Eo S, Cho H, et al. A sparse principal component analysis of Class III malocclusions [J]. The Angle orthodontist, 2019, 89 (5): 768-774.
[9]Jin Y, Qin S, Zhu C. Sparse component analysis based on hierarchical Hough transform[J]. Circuits Systems and Signal Process, 2017, 36 (4): 1569-1585.
[10]Giovanni M, Gemai C. Projection sparse principal component analysis: An efficient least squares method [J]. Journal of Multivariate Analysis, 2019, 173: 366-382.
[11]Heidarieh S M, Jahed M, Ghazizadeh A. A new nonlinear sparse component analysis for a biologi-cally plausible model of neurons [J]. Neural Computa-tion, 2019, 31 (9): 1853-1873.
[12]耿喆, 祝海江, 杨平, 等. 超声C扫描设备定量评价方法研究 [J]. 计量学报, 2019, 40 (5): 893-899.
Geng Z, Zhu H J, Yang P, et al. Study on quantitative evaluation method of ultrasonic C-scan equipment [J]. Acta Metrologica Sinica, 2019, 40 (5): 893-899.
[13]汤正华. 基于改进蝙蝠优化自确定的模糊C-均值聚类算法[J]. 计量学报, 2020, 41 (4): 505-512.
Tang Z H. Self-Defined fuzzy clustering C-Means algori-thm based on improved bat optimization[J]. Acta Metrologica Sinica, 2020, 41 (4): 505-512.
[14]倪豪, 郑慧峰, 王月兵, 等. 基于自动种子区域生长的超声B图像缺陷分割方法 [J]. 计量学报, 2018, 39 (6): 878-883.
Ni H, Zheng H F, Wang Y B, et al. Ultrasonic B Image Defect Segmentation Method Based on Automatic Seeded Region Growing [J]. Acta Metrologica Sinica, 2018, 39 (6): 878-883.
[15]郭保苏, 吴文文, 付强, 等. 基于支持向量机分类策略的多晶硅电池片色差检测 [J]. 计量学报, 2019, 40 (6): 1013-1019.
Guo B S, Wu W W, Fu Q, et al. Color Difference Detection of Polycrystalline Silicon Cells Based on Support Vector Machine Classification Strategy[J]. Acta Metrologica Sinica, 2019, 40 (6): 1013-1019.
[16]陈晋音, 何辉豪. 基于密度的聚类中心自动确定的混合属性数据聚类算法研究 [J]. 自动化学报, 2015, 41 (10): 1798-1813.
Chen J Y, He H H. Research on density-based cluste-ring algorithm for mixed data with determine cluster centers automatically [J]. Acta Automatica Sinica, 2015,41 (10): 1798-1813. |
|
|
|