|
|
Event Separation and Synthesizing and Localization Method on a Complex Waveform |
LIANG Zhi-guo1,LIU Yuan1,HE Zhao2,ZHANG Yi-chi2,WU Ya-hui1 |
1. National Key Laboratory of Science and Technology on Metrology & Calibration, Changcheng Institute of Metrology and Measurement, Beijing 100095, China
2. National Institute of Metrology, China, Beijing 100029, China |
|
|
Abstract Aiming at the analysis and calibration of complex signal waveforms, a complex signal waveform decomposition and synthesis method based on waveform events is proposed. First, the waveform events are classified into periodic events and non-periodic events. For periodic events, they are decomposed in order from high amplitude to low amplitude, simplifying complexity and reducing the complexity and technical difficulty of complex waveform analysis. After decomposition of the periodic event, the rest is a non-periodic event, including single event and random event. By decomposing complex waveforms by event, the accurate positioning of each event on the complex waveform can be obtained, and the effective separation of each event from the parent waveform can be achieved. By the experiments and analysis on a set of complex signal waveforms based on disturbed sine waves, both the effectiveness and feasibility of the method described in the article are verified.
|
Received: 05 February 2020
Published: 24 September 2021
|
|
|
|
|
[1]Pavlov A N, Pavlova O N, Abdurashitov A S, et al. Characterizing scaling properties of complex signals with missed data segments using the multifractal analysis[J]. Chaos, 2018, 28(1): 013124.
[2]Sharma R R, Pachori R B. Eigenvalue Decomposition of Hankel Matrix-Based Time-Frequency Representation for Complex Signals[J]. Circuits Systems & Signal Processing, 2018,37(2): 1-17.
[3]Jin J, Shi J. Automatic feature extraction of waveform signals for in-process diagnostic performance improvement[J]. Journal of Intelligent Manufacturing, 2001, 12(3): 257-268.
[4]Henning B G. Detectability of interaural delay in high-frequency complex waveforms[J]. The Journal of the Acoustical Society of America, 1974, 55(1): 84.
[5]Yanovsky F J, Rudiakova A N, Sinitsyn R B, et al. Copula Analysis of Full Polarimetric Weather Radar Complex Signals[C]// IEEE. Radar Conference. 2017.
[6]Chaturvedi R K, Toth M S. Method for extracting waveform attributes from biological signals[EB]. https://www.deepdyve.com/, 2010.
[7]Jain P, Pachori R B. An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix[J]. Journal of the Franklin Institute, 2015, 352(10): S001600321500 2288.
[8]Zhipeng L, Xingbo C, Xiaomo W, et al. Communication Analysis of Integrated Waveform Based on LFM and MSK[C]// IET. IET International Radar Conference 2015. 2015.
[9]Zhang K S, Ma H, You Z S, et al. Waveform estimation of non-stationary fractal stochastic signals using optimum threshold technique[J]. Acta Electronica Sinica, 2001, 29 (9): 1161-1163.
[10]Liang H, Bressler S L, Desimone R, et al. Empirical mode decomposition: a method for analyzing neural data[J]. Neurocomputing, 2005, 65-66(none): 801-807.
[11]Diykh M, Li Y, Wen P. Classify Epileptic EEG Signals Using Weighted Complex Networks Based Community Structure Detection[J]. Expert Systems with Applications, 2017, 90(8): 87-100.
[12]Yuan Y, Li Y, Yu D, et al. Delay Time-Based Epileptic EEG Detection Using Artificial Neural Network[C]//IEEE. International Conference on Bioinformatics & Biomedical Engineering. 2008.
[13]李翠微, 郑崇勋. ECG信号的小波变换检测方法[J]. 中国生物医学工程学报, 1995, 14(1): 59-66.
Li C W, Zheng C X. A detection methods of ECG using wavelet transform[J]. Chinese Journal of Biomedical Engineering, 1995, 14(1): 59-66.
[14]谢远国, 余辉, 吕扬生. 基于多分辨率分析的心电图QRS波检测[J]. 医疗卫生装备, 2003, 24(9): 5-6.
Xie Y G, Yu H, Lv Y S. QRS complex detection based on multi-resolution analysis[J]. Medical and health equipment, 2003, 24(9): 5-6.
[15]Lee J S, Semela D, Iredale J, et al. Sinusoidal remodeling and angiogenesis: A new function for the liver-specific pericyte?[J]. Hepatology, 2007, 45 (3): 817-825.
[16]Mcaulay R J, Quatieri T F. Speech analysis/Synthesis based on a sinusoidal representation[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1986, 34(4): 744-754.
[17]梁志国. 一种四参数正弦参量估计算法的改进及实验分析[J]. 计量学报, 2017, 38(4): 492-498.
Liang Z G. The improvement and experiment analysis for a four-parameter sine wave curve-fit method[J]. Acta Metrologica Sinica, 2017, 38(4): 492-498.
[18]梁志国. 正弦波拟合参数的不确定度评定[J]. 计量学报, 2018, 39(6): 888-894.
Liang Z G. The Measurement Uncertainty of Curve-fit Parameters of Sinusoidal[J]. Acta Metrologica Sinica, 2018, 39(6): 888-894.
[19]梁志国. 正弦波形参量对A/D有效位数评价的影响[J]. 计量学报, 2017, 38(1): 91-97.
Liang Z G. The influence of Sinusoidal Parameters in Evaluation of Effective Bit of ADC Converts by Curve-fit Method[J]. Acta Metrologica Sinica, 2017, 38(1): 91-97.
[20]梁志国, 朱振宇. 非均匀采样正弦波形的最小二乘拟合算法[J]. 计量学报, 2014, 35(5): 494-499.
Liang Z G, Zhu Z Y. the Sinewave Fit Algorithm Based on Total Least-square Method with Non-uniform Sampling[J]. Acta Metrologica Sinica, 2014, 35(5): 494-499.
[21]梁志国, 朱振宇, 邵新慧, 等. 正弦波形局域失真及相变分析[J]. 振动与冲击, 2013年9月, 32(18): 179-182.
Liang Z G, Zhu Z Y, Shao X H, et al. Definition and Measurement Method for Local Distortion of a Sinusoidal waveform[J]. Journal of Vibration and Shock, 2013, 32(18): 179-182.
[22]Deyst J P, Souders T M, Solomon 0. Bounds on Least-Squares Four-Parameter Sine-Fit Errors Due to Harmonic Distortion and Noise[J]. IEEE Transactions on Instrumentation and Measurement, 1995, 44(3): 637-642.
[23]柏森, 廖晓峰. 基于Walsh变换的图像置乱程度评价方法[J]. 中山大学学报(自然科学版), 2004, 43(S2): 58-61.
Bai S, Liao X F. Image scrambling degree evaluation method based on Walsh transformation[J]. Acta Scientiarum naturalium universitatis senyatseni, 2004, 43(S2): 58-61.
[24]Zhou S, Sun B, Shi J. An SPC monitoring system for cycle-based waveform signals using haar transform[J]. IEEE Transactions on Automation Science and Engineering, 2006, 3(1): 60-72.
[25]李季, 张之国, 肖斌, 等. 基于离散切比雪夫变换的图像压缩[J]. 计算机工程与设计, 2013, 34(12): 4261-4266.
Li Ji, Zhang Z G, Xiao B, et al. based on discrete orthogonal tchebichev transform for image compression[J]. Engineering and design, 2013, 34(12): 4261-4266.
[26]Huang N E. New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4056: 197-209.
[27]Mehboob Z, Yin H. Analysis of Non-stationary Neurobiological Signals Using Empirical Mode Decomposition[C]// Proceedings of the 3rd international workshop on Hybrid Artificial Intelligence Systems. 2008.
[28]Ozturk E, Kucar O, Atkin G. Waveform encoding of binary signals using a wavelet and its Hilbert transform[C]//IEEE Computer Society. Acoustics, Speech, & Signal Processing, on IEEE International Conference. 2000.
[29]Ma H, Su W, Umeda M. Waveform estimation for Hilbert transform of fractal stochastic signals using wavelet transform[J]. Journal of Sichuan University, 2001, 38(5): 647-652.
[30]Deng X, Wang Q, Chen X. A Time-Frequency Localization Method for Singular Signal Detection Using Wavelet-Based Holder Exponent and Hilbert Transform[C]// Congress on Image & Signal Processing. IEEE Computer Society, 2008.
[31]Sharma R R, Pachori R B. A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform[C]// International Conference on Signal Processing and Integrated Networks. IEEE, 2017.
[32]梁志国, 朱济杰, 孟晓风. 四参数正弦曲线拟合的一种收敛算法[J]. 仪器仪表学报, 2006, 27(11): 1513-1519.
Liang Z G, Zhu J J, Meng X X. Convergence algorithm of four-parameter sine wave curve-fit[J]. Chinese Journal of Scientific Instrument, 2006, 27 (11): 1513-19.
[33]梁志国, 孟晓风. 残周期正弦波形的四参数拟合[J]. 计量学报, 2009, 30(3): 245-249.
Liang Z G, Meng X F. A Curve-fit Arithmetic of Four-parameter Sine Wave for Partial Period[J]. Acta metrologica sinica, 2009, 30(3): 245-249. |
|
|
|