|
|
Research on the Method of Small Capacity Measurement Based on Time Domain Spectrophotometry |
LIU Xin-xing1,2,ZHANG Dian-long2,ZHANG Jing-yue2,SUN Bin1,TONG-Lin2,ZHAO Yu-xiao1,ZHONG Jia-dong1 |
1. China Jiliang University, Zhejiang, Hangzhou 310018, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In order to adapt to the current situation of the application of micro capacity and realize the on-line measurement of micro capacity, a micro capacity detection method based on time-domain spectrophotometry is studied. Based on the relationship between the absorbance of solution and the concentration of solution, this method reduces the influence of the processing error of the experimental consumables through the dual wavelength measurement. Based on the time-domain spectroscopic mode, the grating spectrophotometer is used to separate the monochromatic light from the polychromatic light source in the time domain, and then the detector detects the change of the absorbance of solution. Finally, the volume of solution is calculated. At the same time, the actual solution with different concentration can be prepared many times of measurement, to improved the utilization rate of experimental consumables. At 100μL and 50μL, the measurement value of liquid capacity is 99.67μL and 50.11μL, respectively, and the repeatability is 0.35% and 1.22%. Compared with the traditional gravity method, the same conclusion is obtained, which proves the feasibility of the micro capacity measurement method based on time-domain spectrophotometry.
|
Received: 30 December 2019
Published: 24 September 2021
|
|
|
|
|
[1]杨帆, 杨洁. 浅谈移液器的操作规范与校正方法[J]. 计量与测试技术, 2018, 45 (7): 38-39+42.
Yang F, Yang J. Discussion on the Manual operation and calibration of pipette[J]. Metrology & Measurement Technique, 2018, 45 (7): 38-39+42.
[2]孙磊, 孙斌, 赵玉晓. 双通道医用输液泵自动校准系统开发[J]. 计量学报, 2019, 40 (6): 1064-1070.
Sun Lei, Sun B, Zhao Y X. Research and Development of Dual-channel Medical Syringe Pump Automatic Calibration System [J]. Acta Metrologica Sinica, 2019, 40(6): 1064-1070.
[3]周湘平. 小型全自动生化分析仪微量移液系统关键技术研究[D]. 天津: 天津工业大学, 2018.
[4]邬燕琪. 微量液体处理技术的研究及其在自动化核酸分析系统中的应用[D]. 南京: 东南大学, 2016.
[5]路士州. 微量生物试剂非接触式分配机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[6]张诚春, 许诚, 张怡雯. 基于光度原理的移液器校准方法研究 [J]. 计量与测试技术, 2018, 45 (10): 56-59.
Zhang C C, Xu C, Zhang Y W. Study on Calibration Method for Locomotive Pipette Based on Photometric Principle [J]. Metrology & Measurement Technique, 2018, 45 (10): 56-59.
[7]吴丹. 移液器检定中常见技术问题与解决方法 [J]. 计量与测试技术, 2018, 45 (5): 60-61.
Wu D. Common Technical problems and Solutions in the Verification of pipettes [J]. Metrology & Measurement Tech-nique, 2018, 45 (5): 60-61.
[8]施娟. 基于衡量法的移液器校准技术研究 [J]. 计量与测试技术, 2017, 44 (8): 113-115+117.
Shi J. Study on Pipette Calibration Based on Gravimetric Methods [J]. Metrology & Measurement Technique, 2017, 44 (8): 113-115+117.
[9]陈强, 杨丹丹, 柳杰, 等. 基于滴定法原理研制的氰离子浓度在线分析仪 [J]. 铀矿冶, 2019, 38 (3): 210-213.
Chen Q, Yang D D, Liu J, Zhou L H. On-line Cyanide Ion Concentration Analyzer Based on Titration Principle [J]. Uranium mining and smelting, 2019, 38 (03): 210-213.
[10]王金涛, 陈超云, 李志昊, 等. 超微量液体容积双波长参比测量方法研究[J]. 计量学报, 2015, 36 (3): 256-259.
Wang J T, Chen C Y, Li Z H, et al. Study on Dualwavelength Photometric Method for Ultra Micro Liquid Volume Measurement [J]. Acta Metrologica Sinica, 2015, 36 (3): 256-259.
[11]赵玉晓, 谢玄达, 孙斌, 等. 移液器容量自动校准系统研究[J]. 计量学报, 2019, 40(3): 392-396.
Zhao Y X, Xie X ,Sun B, et al. Research on Automatic Calibrating System for Pipette Capacity[J]. Acta Metrologica Sinica, 2019, 40(3): 392-396.
[12]徐丹阳. 多功能光栅光谱仪的研制 [D]. 杭州: 浙江工业大学, 2010.
[13]杨增鹏, 唐玉国, 巴音贺希格, 等. 小型高光谱分辨率光栅单色仪的研制 [J]. 光谱学与光谱分析, 2016, 36 (1): 273-278.
Yang Z P, Tang Y G, Bayanheshig, et al. Research on Small-Type and High-Spectral-Resolution Grating Mono-chromator [J]. Spectroscopy and Spectral Analysis, 2016, 36 (1): 273-278.
[14]郝丑怡. 常见光谱仪的原理分析及性能比较 [J]. 山西师范大学学报 (自然科学版), 2013, 27 (S2): 50-53.
Hao C Y. Principle analysis and performance compari-son of common spectrometers [J]. Journal of Shanxi Norm-al University (Natural Science Edition), 2013, 27 (S2): 50-53.
[15]杜杉, 张国玉, 韩欣欣, 等. 宽光谱高分辨率光谱分析系统设计 [J]. 激光与光电子学进展, 2019, 56 (8): 254-260.
Du B, Zhang G Y, Han X X, et al. Design of Wide-Spectrum High-Resolution Spectral Analysis System [J]. Laser & Optoelectronics Progress, 2019,56 (8): 254-260.
[16]陈建军. 棱镜-光栅型短波红外成像光谱仪关键技术研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2019 |
|
|
|