|
|
Kinematics Calibration of Industrial Robot Fusing Weighted SVD Algorithm |
BAN Zhao1,2,REN Guo-ying2,3,WANG Bin-rui1,CHEN Xiang-jun3,XUE Zi2,WANG Ling1 |
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China |
|
|
Abstract Aiming at the problem that the gross error of measurement introduced by environmental or human factors has a great influence on the conversion of measurement coordinate system and base coordinate system of robot, a method is proposed that the singular value decomposition (SVD) algorithm is improved and applied to the robot kinematics calibration. Taking ABB-IRB2600 robot as the research object, modified D-H (MD-H) kinematics model and error model were established. The position coordinates of the target sphere at the end of robot were measured by the laser tracker. In the SVD algorithm, the weight of the measured data was redistributed according to the position error before compensation, and the measurement coordinate system and the robot base coordinate system were converted. Levenberg-Marquardt (L-M) algorithm was used to identify the error parameters, and 25 kinematic parameters of the robot were simulated and compensated in Matlab. Simulation and experimental results show that the weighted SVD algorithm has better stability and can reduce the impact of gross errors. After calibration, for the average absolute error of the robot is reduced by 65.10% and the root mean square error by 65.85%, and its absolute positioning accuracy is obviously improved after calibration.
|
Received: 28 July 2020
Published: 24 September 2021
|
|
|
|
|
[1]陆艺,葛文琦,郭斌. 基于标准球距离约束的工业机器人参数标定[J]. 计量学报,2020,41 (9): 1048-1054.
Lu Y, Ge W Q, Guo B. Calibration of Industrial Robot Parameters Based on Standard Ball Distance Constraints[J]. Acta Metrologica Sinica, 2020,41 (9): 1048-1054.
[2]齐俊德, 张定华, 李山, 等. 工业机器人绝对定位误差的建模与补偿 [J]. 华南理工大学学报 (自然科学版), 2016, 44 (11): 113-118.
Qi J D, Zhang D H, Li S, et al. Modeling and Compensation of Absolute Positioning Error of Industrial Robots [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44 (11): 113- 118.
[3]Slamani M, Nubiola A, Bonev I. Assessment of the positioning performance of an industrial robot [J]. Industrial Robot, 2012,39 (1): 57-68.
[4]戴厚德, 曾现萍, 游鸿修, 等. 基于光学运动跟踪系统的机器人末端位姿测量与误差补偿 [J]. 机器人, 2019, 41 (2): 206-215.
Dai H D, Zeng X P, You H X, et al. Pose Measurement and Error Compensation of the Robot End-effector Based on an Optical Tracking System [J]. Robot, 2019,41 (2): 206-215.
[5]史晓佳, 张福民, 曲兴华, 等. KUKA工业机器人位姿测量与在线误差补偿 [J]. 机械工程学报, 2017, 53 (8): 1-7.
Shi X J, Zhang F M, Qu X H, et al. Position and Attitude Measurement and Online Errors Compensation for KUKA Industrial Robots [J]. Journal of Mechanical Engineering, 2017, 53 (8): 1-7.
[6]任永杰, 邾继贵, 杨学友, 等. 基于距离精度的测量机器人标定模型及算法 [J]. 计量学报, 2008, 29 (3): 198-202.
Ren Y J, Zhu J G, Yang X Y, et al. Measurement Robot Calibration Model and Algorithm Based on Distance Accur-acy [J]. Acta Metrologica Sinica, 2008, 29 (3): 198-202.
[7]张强, 曲道奎, 徐方, 等. 基于误差分布估计的机器人手眼标定方法研究 [J]. 计算机测量与控制, 2018, 26 (4): 246-249.
Zhang Q, Qu D K, Xu F, et al. Error Distribution Estimation Based Robot Hand-eye Calibration [J]. Com-puter Measurement & Control, 2018, 26 (4): 246-249.
[8]王昌云, 李立君. 基于四元数的机器人手眼标定算法 [J]. 传感器与微系统, 2019, 38 (12): 133-135.
Wang C Y, Li L J. Hand-eye Calibration Algorithm for Robot Based on Quaternion [J]. Transducer and Micr-osystem Technologies, 2019, 38 (12): 133-135.
[9]Heller J, Havlena M, Pajdla T. Globally optimal hand-eye calibration using branch-and-bound [J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2016, 38 (5): 1027-1033.
[10]李永泉, 王皓辰, 张阳, 等. 一种基于手眼视觉的并联机器人标定方法 [J]. 中国机械工程, 2020, 31 (6): 722-730, 755.
Li Y Q, Wang H C, Zhang Y, et al. A Calibration Method for Parallel Robot Based on Eye in Hand Vision [J]. China Mechanical Engineering, 2020, 31 (6): 722-730, 755.
[11]徐昌军. 基于MDH模型的工业机器人运动学标定技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[12]Hayati S, Mirmirani M. Improving the Absolute Positioning Accuracy of Robot Manipulators [J]. Journal of Robotic Systems, 1985, 2 (4): 397-413.
[13]Daniel G M, Joaquín B, Eduardo C, et al. Influence of human factor in the AACMM performance: a new evaluation methodology [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15 (7): 1283-1291.
[14]张国强. 工业机器人运动学参数与动态行为辨识技术 [D]. 武汉: 华中科技大学, 2016.
[15]蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000.
[16]温秀兰, 崔俊宇, 芮平, 等. 轴线测量与迭代补偿的机器人几何参数标定 [J]. 计量学报,2018,39 (4): 449-454.
Wen X L, Cui J Y, Rui P, et al. Robot Geometric Parameters Calibration Based on Axis Measurement and Iterative Compensation [J]. Acta Metrologica Sinica, 2018, 39 (4): 449-454.
[17]皇甫亚波, 杭鲁滨, 程武山, 等. 基于LM算法的机器人运动学标定 [J]. 轻工机械, 2017, 35 (4): 1-7.
Huang Fu Y B, Hang L B, Cheng W SH, et al. Kinematic calibration for robot based on LM algorithm [J]. Light Industry Machinery, 2017, 35 (4): 1-7.
[18]陆艺, 于丽梅, 郭斌. 基于封闭尺寸链的工业机器人结构参数标定 [J]. 仪器仪表学报, 2018, 39 (2): 38-46.
Lu Yi, Yu L M, Guo B. Calibration of industrial robot structure parameters based on closed dimensional chain [J]. Chinese Journal of Scientific Instrument, 2018, 39 (2): 38-46. |
|
|
|