[1]王卓峰, 敦剑, 卢红波, 等. 工业汽轮机的经济出力分界点[J]. 化工学报, 2012, 63(11): 3579-3584.
Wang J F, Dun J, Lu H B, et al. Dividing point of economic output of industrial steam turbine[J]. CIESC Journal, 2012, 63(11): 3579-3584.
[2]左智科, 陈国彬, 刘超, 等. 反馈精英鲸鱼优化算法优化LSSVM的热耗率软测量建模[J]. 计量学报, 2019, 40(2): 259-265.
Zuo Z K, Chen G S, Liu C, et al. Soft Sensor Model of Heat Rate Based on Optimized LSSVM by FEWOA[J]. Acta Metrologica Sinica, 2019, 40(2): 259-265.
[3]王莉莉, 陈国彬, 李一龙, 等. 基于CPSO-LSSVM的汽轮机热耗率软测量模型[J]. 动力工程学报, 2018, 38(9): 706-712.
Wang L L, Chen G S, Li Y L, et al. Soft Sensor Modelling of Steam Turbine Heat Rate Based on CPSO-LSSVM[J]. Journal of Chinese Society of Power Engineering, 2018, 38(9): 706-712.
[4]牛培峰, 王枭飞,刘楠,等. 基于共生生物搜索算法的汽轮机最优初压研究[J]. 计量学报, 2019, 40(3): 447-454.
Niu P F,Wang X F,Liu N, et al. Optimization on Inital Pressure of a Steam Turbine Based on Symbiotic Organisms Search Algorithm. Acta Metrologica Sinica, 2019, 40(3): 447-454.
[5]牛培峰,丁翔,刘楠,等. 基于混合鸡群算法和核极端学习机的锅炉NOx排放的预测[J]. 计量学报, 2019, 40(5): 929-936.
Niu P F,Ding X,Liu N,et al. Prediction of Boiler NOx Emission Based on Mixed Chicken Swarm Algorithm and Kernel Extreme Learning Machine[J]. Acta Metrologica Sinica, 2019, 40(5): 929-936.
[6]王惠杰, 范志愿, 许小刚. 基于FOA-LSSVM的汽轮机热耗率预测模型研究[J]. 热力发电, 2017, 46(5): 36-42.
Wang H J, Fan Z Y, Xu X G. Research on prediction model of heat consumption rate of steam turbine based on FOA-LSSVM[J]. Thermal Power Generation, 2017, 46(5): 36-42.
[7]朱誉, 冯利法, 徐治皋. 基于BP神经网络的热经济性在线计算模型[J]. 热力发电, 2008, 37(12): 17-19.
Zhu Y, Feng L F, Xu Z F. An On-Line Calculation Model of Thermal Economic Efficiency Based BP Neural Network[J]. Thermal Power Generation, 2008, 37(12): 17-19.
[8]刘生建, 杨艳, 周永权. 一种群体智能算法——狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441.
Liu S J, Yang Y, Zhou Y Q. A Swarm Intelligence Algorithm-Lion Swarm Optimization[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 431-441.
[9]Li G Q, Niu P F, Duan X L, et al. Fast learning network: a novel artificial neural network with a fast learning speed[J]. Neural Computing and Applications, 2014, 24(7/8): 1683-1695.
[10]Shi Y, Eberhart R. A modified particle swarm optimization[C]//IEEE World Congress on Computational Intelligence. 1998.
[11]Clover F. Tabu Search—Part I[J]. ORSA J on Computing, 1989, 1(3): 89-98.
[12]Tanyidizi E, Demir G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm[J]. Advances in Electrical and Computer Engineering, 2017, 17(2): 71-78.
[13]张震, 魏鹏, 李玉峰, 等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报, 2018, 39(12): 60-68.
Zhang Z, Wei P, Li Y F, et al. Feature selection algorithm based on improved particle swarm joint taboo search[J]. Journal on Communications, 2018, 39(12): 60-68.
[14]肖子雅, 刘升. 黄金正弦混合原子优化算法[J]. 微电子学与计算机, 2019, 36(6): 21-25.
Xiao Z Y, Liu S. Atom search optimization based on golden-sine algorithm[J]. Microelectronics & Computer, 2019, 36(6): 21-25.
[15]牛培峰, 王丘亚, 马云鹏, 等. 基于量子自适应鸟群算法的锅炉NOx排放特性研究[J]. 计量学报, 2017, 38(6): 770-775.
Niu P F, Wang Q Y, Ma Y P, et al. Study on NOx Emission from Boiler Based on Quantum Adaptation Bird Swarm Algorithm[J]. Acta Metrologica Sinica, 2017, 38(6): 770-775.
[16]牛培峰, 吴志良, 马云鹏, 等. 基于鲸鱼优化算法的汽轮机热耗率模型预测[J]. 化工学报, 2017, 68(3): 1049-1057.
Niu P F, Wu Z L, Ma Y P, et al. Prediction of steam turbine heat consumption rate based on whale optimization algorithm[J]. CIESC Journal, 2017, 68(3): 1049-1057.
[17]牛培峰, 陈科, 刘阿玲, 等. 基于磷虾群算法的汽轮机组最优初压研究[J]. 动力工程学报, 2017, 37(8): 615-621.
Niu P F, Chen K, Liu A L, et al. Study on the Optimal Initial Pressure of a Steam Turbine Unit Based on Krill Herd Algorithm[J]. Journal of Chinese Society of Power Engineering, 2017, 37(8): 615-621.
[18]云曦, 阎维平. 火电厂汽轮机组影响热耗率计算的因素[J]. 东北电力技术, 2007,(3): 15-18.
Yun X, Yan W P. Factors Effecting Heat Consumption Calculation for Steamed Turbine of Fossil-fired Power Plant[J]. Northeast Electric Power Technology, 2007,(3): 15-18. |